I-2-5. The Detection and Study of Solar Cosmic Rays by Radio Thchniques*

D. K. BAILEY

National Bureau of Standards, Boulder, Colorado, U.S.A.

Three distinct radio techniques have thus far been extensively used in the study of polar-cap absorption events (PCA's). PCA's represent a major ionospheric phenomenon resulting from the existence of a low-energy tail of the rather steep spectra of solar cosmic rays ejected from time to time from active solar regions. The most important energy range is from about 30 to 300 Mev. PCA's are much more common than would be surmised if knowledge of them rested solely upon the occurrence of sharp increases in ground-level cosmic-ray intensity relative to normal background. The techniques, which to be of greatest use, must be employed in geomagnetic latitudes greater than 65° to 70°, are:

-study of f_{min} behavior from ionosonde observations,

add wide balling of riometers, and

-study of field-strength variations of VHF waves scattered obliquely from the lower ionosphere.

Each technique supplies somewhat different information. The advantages and limitations of each are discussed.

Solar cosmic rays can be detected at high latitudes even in the absence of ground-level effects by means of measurements of radio wave absorption. The absorption results from ionization between heights of about 45 and about 75 km produced by the cosmic rays. Other types of particle ionization over the polar regions seem mainly to occur above 80 km and are especially important in the 85 to 105 km region.

The solar cosmic rays have been found to consist mainly of protons arriving essentially isotropically at least during times of moderate to great solar activity. Their energy spectrum is usually representable as a fairly steep power law, and the energy range of greatest significance for the ionospheric absorption is from about 30 to about 300 Mev. The ionospheric absorption associated with solar protons is usually termed polar cap absorption (PCA) since, unlike auroral zone absorption, it occurs with considerable uniformity over the entire polar cap, i.e. both at and inside the auroral zone. A decade of study of PCA's has shown them to occur with much greater frequency than ground-level solar cosmic-ray effects, though

all of the latter occurrences, which were widespread geographically, were followed by polar cap absorption within a matter of an hour or so. The magnitude of the ionospheric absorption for a given flux of solar protons is markedly dependent upon the presence or absence of sunlight, being much greater during daylight.

Curves have been prepared showing the non-deviative absorption in decibels for the ordinary wave as a function of frequency, corresponding to a typical auroral absorption and a typical polar cap absorption by day. The curves labelled A and B respectively in Fig. 1 are normalized to give a plane-wave absorption of 5 decibels at 30 Mc/s for a wave passing once vertically through the ionosphere. The third curve of Fig. 1, labelled C, indicates typical night values of polar cap absorption. The curves are based on recent information and ideas about the abnormal ionization produced under these various circumstances. Because the absorbing region produced by solar cosmic rays is usually far below the E layer, in a height region where the electron collision number is high, the absorption at frequencies between about 2 and about 5 Mc/s is seen to be nearly independent of frequency and much less than might have been expected from

^{*} This is an exact duplicate of the manuscript submitted to Washington for editorial approval. 8/16/61 Joyce Benedict.

Fig. 1. Typical absorption versus frequency relations for A, auroral absorption, and B, C, polar cap absorption, day and night respectively, for the ordinary wave passing once vertically through the absorbing region.

the value at 30 Mc/s. On the other hand the auroral absorption, occurring in a region just below the E layer, rises more steeply with decreasing frequency. This is not accurately specified below about 16 Mc/s since total reflection often occurs at low frequencies.

These curves, though only crudely illustrative, are useful in the following discussion of the three principal radio techniques employed thus far in the study of solar cosmic rays (PCA events). A short Appendix gives the numerical data for which the curves were calculated.

Study of f_{min} Behavior

The study of ionosonde data for indications of PCA events is particularly valuable for extending the statistics of occurrence of PCA events backward in time into the period before other radio techniques for PCA detection had come into use. The increases in f_{min} for high-latitude ionosonde stations have been employed by Japanese and Canadian workers respectively to study specific PCA events and the statistics of PCA occurrence. The main difficulties associated with this technique are due to the small frequency dependence of the absorption in the frequency range where vertical incidence echoes are most commonly observed. Furthermore most modest PCA's, except possibly those of long delay, may not produce sufficient absorption to blackout the ionogram. A further difficulty arises when more than one PCA event takes place within a few days, and auroral absorption also occurs a day or so after the first event. Quite modest auroral absorption, insofar as observations at VHF are concerned, can cause complete ionosonde blackout. Comparison of simultaneous ionosonde records from several stations and other simultaneous geomagnetic data often proves useful in disentangling a PCA event.

DATE	ON- SET, UT	DURA- TION DAYS	CLASS	REMARKS	FLARE IMPORT- ANCE	DATE		BEGIN, UT	END, UT	LAT DEG	LONG DEG	INTERVAL FLARE BE- CINNING TO ONSET, HOURS	SWRF IM- PORT- ANCE	DATE	BEGIN, UT	end, UT	INTERVAL SWRF BEGIN- NING TO ON- SET HOURS
1952		4.6	E e	No PCA's detected.													
<u>1953</u> 19 May	1930	up-	≼ S	Decimetric solar noise burst ob- served at Ottawa beginning 1916 UT.	Unknot	m - 1	no fl	are pat	rol.	1		1/2(?)	Unkno	own			
1954	4	3 6	5 9	No PCA's detected.													
1955	Test	Sur Sol	3	No PCA's detected.	5	ă .					1						
1956	01:20	1.2	1. A	"Farly affects" before 0400 IF	3	23 1	Feb	03345	0510	N23	1480	1	3+	23 Feb	0330	0610	1
23 Feb	0430	+2	Ľ	very large cosmic-ray increase.	5	2 .			0)10	INC.S	I NOO		5.	25 100	0330	0010	-
31 Aug	1500	21/2	S	Small cosmic-ray increase.	3	31 /	Aug	1228	1630D	N16	E16	21/2	3	31 Aug	1239	1400	21/2
13 Nov	2000	2	М	귀경 집 입 말 좀 한	2	13 1	Nov	1430E	1555	N16	WIO	5 1	2+	13 Nov	1430	1630	5불
1957				E.	-					1	T		[1			
20 Jan	1500	22	S	12 6 E B E - 8 E	2+	20 J	an	1100	1417	S27	W18	4	1+	20 Jan	1113	1126	4
3 Apr	1400	21/2	S	3 3 3 5 4 5	3	3 A	pr	0825	1026D	S15	W60	5월	2	3 Apr	0833	0908	5불
21 Jun 22 Jun	1300 0530	312 3	M	Possibly one event; onset time very uncertain; flare associa- tion very uncertain.	22	21 J 22 J	lun Jun	1742 0236	1820 0257	N14 N23	E02 E12	(?) 3	1 2	21 Jun 22 Jun	1743 0229	1802 0343	(?) 3
3 Jul	1030	2	м	Man da da a	3+	3 J	ul	0712	0830D	N14	W40	3불	3	3 Jul	0729	0914	3
24 Jul	2030	1/2	VS	Doubtful late-afternoon effects of short duration; simultaneous onsets.	3	24 J	TUL	1712	18010	S24	W27	312	3-	24 Jul	1727	1920	3
29 Aug	0030	> 1/2	S	2 2 3 4 S &	2+	28 A	ug	2010	2048	s28	E30	41	2+	28 Aug	2020	2038	4
29 Aug	1330	>2	M	Superimposed on previous event.	2	29 A	ug	1031	1110	S25	E20	3	1+	29 Aug	1039	1055	3
31 Aug	1530	2	М	Superimposed on previous event.	3	31 A	ug	1257	1455D	N25	W02	21	3+	31 Aug	1303	1607	21
2 Sep	1730	11	S		1+	2 5	ep	1257	1346	NIO	W26	41	2-	2 Sep	1259	1407	41
12 Sep	0900	1	VS	Doubtful effects; onset time very uncertain and of very long delay	3	11 S	lep	0236E	0722	N13	W02	30 ¹ / ₂	3	11 Sep	0244	0424	30 ¹ / ₂
21 Sep	1630	2	М	Cutoff reduction effects beginn- ing 1600 UT, 22 Sep.	3	21 S	ep	1330	1510	NIO	W06	3	3-	21 Sep	1330	1545	3
21 Oct	0300	5	м	Onset time very uncertain.	3+	20 0	Oct	1637	1644D	S26	W45	101	3+	20 Oct	1639	1915	10 <u>1</u>

CATALOC OF POLAR-CAP ABSORPTION EVENTS (1952 THROUGH 1960) FROM VHF IONOSPHERIC SCATTER OBSERVATIONS, WITH DETAILS OF POSSIBLY RELATED PRECEDING SOLAR FLARES AND SHORT-WAVE RADIO FADEOUTS

I-2-5, D. K. BAILEY

Table 1 (a).

Table 1.

DATE	ON- SET, UT	DURA- TION DAYS	CLASS	REMARKS	FLARE IMPORT- ANCE	DATE	BEGIN, UT	END, UT	LAT DEG	LONG DEG	INTERVAL FLARE BE- GINNING TO ONSET, HOURS	SWRF IM- PORT- ANCE	DATE	BEGIN, UT	END, UT	INTERVAL SWRF BEGIN- NING TO ON- SET HOURS
1958	0600		100	Orget time your uncertain	2+	9 Feb	2108	2302	512	W14	q	1	9 Feb	2124	2144	81
LO FED	1820	1	VD 1/0	Unber time very uncertain.	3+	23 Mar	0947	1445	S14	E78	84	3	23 Mar	0953	1309	81
25 Mar 25 Mar	1300	412	VL	Marked further increase in ab-	2	25 Mar 25 Mar	0529E	0555	N17	E25	7 <u>1</u> 7	2 2	25 Mar 25 Mar	0525	0600	7 ¹ / ₂ 7
10 Apr	1000	21/2	S	Uncertain flare association; no significant solar radio noise.	1+	10 Apr	0855E	1007	N18	w78	1	1	10 Apr	0841	0930	11/2
7 Jul	0600	3	VL	Cutoff reduction effects beginn- ing 1000 UT, 8 Jul.	3+	7 Jul	0020	0414	N25	80W	5불	3	7 Jul	0025	0230	5불
29 Jul	0500	1	VS	the star second meaning of	3	29 Jul	0259E	0408	S14	W44	2	3+	29 Jul	0240	0440	21/2
16 Aug	0600	21	м	part copper sea percention	3+	16 Aug	0433	0831	S14	W50	11/2	3+	16 Aug	0432	0720	112
22 Aug	1530	31	L	forg there because and a	3	22 Aug	1428	1717D	NIS	W10	1	3+	22 Aug	1435	1727	1
26 Aug	0400	21	L	and the second second second second	3	26 Aug	0005	0124	N50	W54	4	3+	26 Aug	0010	0410	4
22 Sep	1400	3	М		2	22 Sep	1009	1035	N17	W65	4	1	22 Sep	1010	1025	4
<u>1959</u> 11 May	0100	5월	VL	Cutoff reduction effects beginn- ing 0400 UT, 12 May.	3+	10 May	2055	0200D	N18	E48	4	3+	10 May	2110	0630	4
10 Jul	0800	> 4	VL	Onset time uncertain, but marked	3+	10 Jul	0206	0908D	N20	E66	6	3+	10 Jul	0200	0510	6
50 104	0000	1	10	at 1200 UT; cutoff reduction ef- fects beginning 1700 UT, 11 Jul.			-						Com.	1000 0000	000	1.1
14 Jul	0800	> 3	VL	Superimposed on previous event; onset time determined from lower	3+	14 Jul	0319	0901	N16	E06	42	3+	14 Jul	0328	0628	42
SALE.	10	2112	CEVER	latitude paths; cutoff reduction effects beginning C700 UT,15 Jul	TRACE	200	02:1		-	1	-		mi			Cost and the
17 Jul	0300	5	L	Superimposed on previous event; onset time determined from lower latitude paths; very small cos- mic-ray increase; cutoff reduc-	3	16 Jul	2115	0030	N15	W30	512	3+	16 Jul	2118	0015	512
2 Sep	0400	2	vs	tion effects beginning 1800 UT, 17 Jul.	2+	l Sep	1924	2216	N12	E60	8 ¹ / ₂	2	l Sep	1945	2058	8

Table 1 (b).

Table 1. CATALOG OF POLAR-CAP ABSORPTION EVENTS (1952 THROUGH 1960) FROM VHF IONOSPHERIC SCATTER OBSERVATIONS, WITH DETAILS OF POSSIBLY RELATED PRECEDING SOLAR FLARES AND SHORT-WAVE RADIO FADEOUTS

Disturbances in Polar Regions

DATE	ON- SET, UT	DURA- TION DAYS	CLASS	REMARKS	FLARE IMPORT- ANCE	DATE	BECIN, UT	END, UT	LAT DEG	LONG DEG	INTERVAL FLARE BE- GINNING TO ONSET, HOURS	SWRF IM- PORT- ANCE	DATE	BEG IN, UT	end, ut	INTERVAL SWRF BEGIN- NING TO ON- SET HOURS
1960	-			Leander State Strategie												
12 Jan	0700	12	VS .	Onset time uncertain.	3	11 Jan	2040	2355D	N23	E03	102	2-	11 Jan	2100	2124	10
29 Mar	0800	12	VS		2+	29 Mar	0705E	0952D	NII	E30	1	3+	29 Mar	0652	0853	1
30 Mar	2000	> 15	VS	Masked by succeeding event; on- set time very uncertain.	2	30 Mar	1455	1858	N12	E12	5	3	30 Mar	1520	1800	42
l Apr	0930	2	S	A CONTRACTOR OF	3	1 Apr	0845	1222	N12	W10 .	> 1/2	3	1 Apr	0850	0947	1/2
5 Apr	0800	1늘	S		2+	5 Apr	0215E	0308	N12	W61	6	3+	5 Apr	0140	0417	6불
28 Apr	0200	1	VS	A REAL PLACE PROPERTY AND	3	28 Apr	0130E	0145D	S05	E34	> 1/2	3+	28 Apr	0120	0300	12
29 Apr	0600	112	М	Very rapid recovery during day- light on 30 Apr.	2+	29 Apr	0138	0710	N12	W20	42	3	29 Apr	0205	0500	4
4 May	1030	~ 1/2	VS	Very short duration, about $2\frac{1}{2}$ hrs; cosmic ray increase.	2	4 May	1000	1105	N14	W90	1/2	3	4 May	1015	1050	< 1/2
6 May	1800	21/2	М	Onset time rather uncertain.	3	6 May	1404	2020	S10	E08	4	3	6 May	1427	1658	3불
13 May	0800	l	S	Some evidence for onset as early as 0400 UT.	3	13 May	0520	0733	N29	w67	21/2	3+	13 May	0512	0853	3
3 Sep	0500	2불	S	Cosmic ray increase.	2+	3 Sep	0038	0154D	NIS	E88	4클	3+	3 Sep	0045	0251	4
12 Nov	1400	21/2	М	Large cosmic-ray increase; cut- off reduction effects beginning	3+	12 Nov	1320	1922	N26	W04	> 1/2	3+	12 Nov	1326	1600	12
1 - 5 Mar	1.00	and the	15	0500 UT, 13 Nov.		A State						1.		1		1. S. S. S.
15 Nov	0900	그늘	S	Cosmic-ray increase; cutoff re-	3+	15 Nov	0207	0427	N26	W33	7	3+	15 Nov	0217	0630	6월
73	0000	1.1	199	UT, 15 Nov.		CLER	Ta	(Best)	-				NGE	1		
21 Nov	0200	1불	S	Small cosmic-ray increase.	2	20 Nov	2018	2024	N25	W90	5클	3-	20 Nov	2023	2145	5불
0128	2	1000	CIV63	Succession of the succession o		nex 1	12 1	Tel St		-	Tiolig .	-				
		0000					CONTRACTOR Y	1007	1	7055	18 30124	244		ann an	1001	and to or-
											STORE LINE	-			1	LALEKAYT

Table 1 (c).

Table 1. CATALOG OF POLAR-CAP ABSORPTION EVENTS (1952 THROUGH 1960) FROM VHF IONOSPHERIC SCATTER OBSERVATIONS, WITH DETAILS OF POSSIBLY RELATED PRECEDING SOLAR FLARES AND SHORT-WAVE RADIO FADEOUTS

USCOMM-NBS-BL

Use of Riometers

Riometers measure total absorption through the ionosphere, and thus are influenced by auroral absorption. The irregular behavior of auroral absorption with time as compared with the fairly smooth behavior of polar cap absorption has proved useful in separating the effects. Riometers are capable of providing an accurate and quantitative measurement of the intensity of polar cap absorption by day, but are rather insensitive at night. Riometers have been mostly used at frequencies between about 27 and 50 Mc/s.

Use of Signal-Intensity Variations of VHF Waves Scattered Obliquely from the Lower Ionosphere

The principal advantage possessed by observation of oblique-incidence VHF scatter signal intensities is their complete immunity from effects of auroral absorption. This advantage, together with the availability of simultaneous and continuous records from a number of high-latitude paths, has made the observations especially valuable for defining onset times, durations, and approximate intensities of PCA events from late 1951 to the present time, thus providing what is believed to be the longest and most uniform set of PCA observations.

The intensity of the scattered signals, observed at frequencies mostly between 30 and 38 Mc/s, insofar as PCA observations are concerned, depends upon two considerations. From the transmission equation defining ionospheric scatter propagation it can be demonstrated that the received signal intensity, expressed in decibels, varies independently of frequency and directly as the logarithm of the ambient electron density at the levels where the scattering inhomogeneities exist. Thus if the electron density is increased, as during a PCA event, the signal intensity should increase. On the other hand if most of the abnormal ionization giving rise to the PCA event lies below the principal scatter-

ing levels then the signal intensity should exhibit a decrease owing to absorption which is proportional to the electron density and decreases rapidly as the frequency increases. During daylight when the increase in electron density associated with PCA events is very great, the absorption effect at the frequencies employed dominates the enhancement effect and the signal intensities show a strong net decrease. At night, on the other hand, when electron attachment occurs, the enhancement effect dominates the absorption, and the signal intensities are well above normal. Thus the onset times, and durations of PCA events can be ascertained with some precision independently of conditions of illumination, although the departures of signal intensity from normal do not directly measure the intensity of the absorption.

The discrimination against auroral absorption comes about because the principal scattering levels in high latitudes lie below the levels of the auroral absorption. By day the principal scattering stratum is believed to lie in the region of 65 to 75 km, whereas at night it lies near 85 km. Even at night the scattering takes place mostly below the region in which auroral absorption occurs.

An additional advantage possessed by the VHF scatter signal intensities lies in their immunity to interference from solar radio, noise, which at times obscures the absorption effects when riometers are used by day.

In the next few years of low solar activity especially, useful information about solar cosmic rays can be obtained from a suitably distributed set of riometer stations in and near both polar caps, each station capable of observing at several frequencies simultaneously.

Appendix

The three typical curves shown in Fig. 1. are computed for approximating thick uniform absorbing layers as follows:

	Curve	Lower a Boundary k	nd Upper y Heights, m.	Electron Collision No., sec ⁻¹	Corresponding Height, km.	Electron Density, cm ⁻³	Corresponding f_0 , Mc/s		
A	Auroral	85	100	$1.0 imes 10^{6}$	87	$2.8 imes 10^{6} \ 2.1 imes 10^{4} \ 4.2 imes 10^{3}$	15.2		
B	PCA (day)	45	75	7.7 imes 10^{7}	55		1.3		
C	PCA(night)	45	75	7.7 imes 10^{7}	55		0.59		

I-2-5, D. K. BAILEY

Discussion

Shapley, A.H.: It should be noted that PCA events which are classified as large by one technique may be small as seen by another, and vice-versa. There are many examples of this when one compares your "forwardscatter" list with the one compiled by Piggott and myself from southerh hemisphere f_{min} data. Isn't this because the techniques are effectively sensitive to increased ionizations at different levels, f_{min} relatively high and forward scatter relatively low?

Bailey, **D.K**: The answer to your question is "yes" as I described. In my list PCA's are classified according to the magnitude of the absorption observed at VHF at oblique incidence, and at levels below the scattering stratum.

Shapley, A.H.: The list of IGY PCA events by Piggott and myself from Antarctic f_{min} data was included in a paper given last month at the Pacific Science Congress. One looks forward to the possibility of intercomparing the various lists of events.

Piggott, W.R.: Mr. Chairman. If practical, it would be very helpful to us all to include Dr. Bailey's list of PCA events in the Proceedings of this Conference. Such lists are invaluable for further work.

Bailey, **D. K.**: If the conference proceedings can accomodate the extra material I should be happy to supply the list.

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN Vol. 17, SUPPLEMENT A-I, 1962 INTERNATIONAL CONFERENCE ON COSMIC RAYS AND THE EARTH STORM Part I

I-2-6. Some Auroral Zone Disturbances at Times of Magnetic Micropulsation Storms

W. H. CAMPBELL

National Bureau of Standards, Boulder, Colorado, U.S.A.

Studies of magnetic field fluctuations coincident with auroral luminosity pulsations (J.G.R., Jan., 1961), with riometer absorption (J.G.R., Jan., 1961) and with electron bremsstrahlung (J.G.R., Oct., 1961) have been reported. There is strong evidence, therefore, that 5 to 30 sec period pulsations of the earth's magnetic field arise in the auroral zone at times of the precipitation of electrons into the ionosphere. It is the purpose of this paper to report some further investigations with this same point of view. The measurements to be described were taken near College, Alaska, between September, 1959, and September, 1960, using a two meter diameter loop antenna of 21,586 turns (J.G.R., Nov., 1959). A more complete report on this work will appear soon in the scientific literature.

First, we will discuss some studies in which standard magnetometer (magneto-

grams) and ionospheric sounder data (f-plots) were utilized. From the one year's records of 5 to 30 sec period micropulsation activity it was possible to select 31 occasions on which the field amplitudes increased rapidly on the record, clearly defining a "micropulsation storm" onset. Magnetograms and ionospheric *f*-plots were scaled during these times (Fig. 1). Most of the storms occurred near the midnight hours. The average behavior of the micropulsations shows a maximum in the first five minutes after the commencement and a decay at a rate of apx. 2.5 gamma per hour (Fig. 2). A measure of the percentage electron density increase over the monthly average value, evidenced by the f_{min} values, was obtained for the storm times and is shown in Fig. 3. Although only 15 min. data samples were available in this case a clear indication that the maximum occurs 30 to 60 min. following the micropulsation