into not-interacting μ -mesons, but in system where the π^{\pm} mesons themselves interact, energy which is not in π^0 component continuously contribute to the π^0 component, so it would appear off hand that the factor should be closer to 50% even 60% going into π^0 component of the total amount of the energy and to assume only 1/3 goes to π^0 component does not seem applicable for this type of experiment.

Powell: The argument is that, if I understand it correctly, in the case of such curves as for presented, the total energy of incident particle is given by the total ionization and the fraction going into π^0 meson of the first impact is given by the first peak. If the energy from this is 33%, it is all right.

Koshiba, M.: I am speaking only using a part of ICEF data, and if there may be any mistake some participating laboratories may make the claim. In the interaction of average energy around 10,000 BeV π^0 carries off in the average 16-17% of the total energy. This estimation has been corrected for π^\pm going into π^0 approximately. Now allowing for the fact that $< P_t >$ is the same for all the component, which we did also confirm in our P_t distribution, and making estimation on charged component, that is mainly π , we can confirm that on the average twice the energy goes into π^\pm component as that of π^0 component and then we can build a picture, that is, about 50% going to π^\pm π^0 , and say about another 15~20% going to X particle and the rest being carried off by the nucleon.

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN Vol. 17, SUPPLEMENT A-III, 1962 INTERNATIONAL CONFERENCE ON COSMIC RAYS AND THE EARTH STORM Part III

III-6-26. Large Emulsion Chamber Project at a Mountain Altitude*

Y. FUJIMOTO

Institute for Nuclear Study, University of Tokyo, Tokyo, Japan

^{*} The contents of this article are similar with III-6-16 and the separate manuscript was not provided.