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The effect of the anisotropy energy on the screw structure is investigated concerning 
the magnetic structure of heavy rare-earth metals. In the high temperature region 
near the Neel temperature the free energy of the spin system is calculated and it is 
shown that if the preferred direction of the spin is in the c plane, a usual screw structure 
appears, whereas if the anisotropy energy makes the preferred direction of the spin 
parallel to the c axis, only the z-component oscillation first appears and then the oscilla
tion of x or y component appears at a lower temperature. The change of the period 
of the screw and the various magnetic transitions observed in dysprosium, holmium 
and erbium are also discussed. 

According to the neutron diffraction ex· 
periments on single crystals of dysprosium, 
holmium and erbium made by Koehler, 
Wilkinson, Wollan and Cable11 , these rare· 
earth metals have various types of spin 
ordering. Since these spin structures can be 
regarded as screw structures modified by the 
anisotropy energy, we investigate the effect 
of the anisotropy on a simple screw struc
ture. 

In the rare-earth metals, the orbital moment 
of each ion is not quenched. Therefore, the 
anisotropy energy is expected to be quite 
large compared with that in the iron-group 
metals. The one-ion anisotropy energy of a 
rare-earth ion in a crystal of hexagonal 
close packed structure, whi<;h is regarded as 
a predominant part of the anisotropy energy, 
can be described by the following four 
spherical harmonics : 

Ha= V2+ V,+ Vs+ Vs6
, ( 1) 

1 V2=Dz-C3 5,2-52)=D5 2P2 (cosO), ( 2) 

V,=E ~ (35 5.'-30 5 25,2 +3 5') 

= E5' P, (cos 0) , ( 3 ) 

Vs=F 1~ (2315,6 -3155 25.'+ 1055'5,2-556
) 

=F5 6Ps (cosO), 

Vs 6 =G ~ (5+6 +5-6
), 

(4) 

( 5) 

where the z axis is taken along the hex· 
agonal axis, 0 represents the polar angle and 
P,. is the Legendre polynomial of the n-th 
order. The spin moment is treated as a 
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classical quantity because the magnetic 
moment of the atom is large for the rare· 
earth metals under consideration. 

The exchange interaction is given by 

Hex=-'J:,;'J:,j ](Ri-R;) SrS; , ( 6) 

and we assume that the Fourier transform 
of the exchange integral 

](q)= 'Zi](Ri-R;) exp [iq·(Ri-R;)] ( 7) 

has its maximum at q=Qo=t=-0 along the c 
axis so that a simple screw structure charac· 
terized by Q0 may be stable in the absence 
of the anisotropy energy. 

In order to investigate the situation near 
the Neel temperature, we shall calculate the 
free energy of the spin system whose Hamil· 
tonian consists of Eqs. ( 1) and ( 6) in a 
power series with respect to the ordered spin 
moment. According to the Weiss approxima· 
tion we divide si into the following two parts 
in the expression ( 6) for the exchange inter· 
action: 

(8) 

where Ui is introduced as a measure of the 
thermal average of the i-th spin and the 
second term represents its deviation from u;. 
Then the free energy of the system can be 
calculated as 

F='J:, ;'J:,;](Ri-R;)uru;-kT 'Zi log 

~exp [ {2 'Zif(Ri-:;:urS;-Ha;}}.Q;. ( 9 ) 

In the usual Weiss approximation, u; is de· 
termined by the self-consistency condition, 
but in our case this condition becomes hard 
to deal with because u; generally depends on 
i. Therefore, we assume the i-dependence 
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of a; in an appropriate form with several 
variational parameters and determine these 
parameters by the minimum condition for 
the free energy. The simplest form of a; 

which will be a good approximation at least 
at high temperatures is 

(10) 

The hodograph of the average spin moment 
for this form of a ; is an ellipse. Inserting 
the expressions (10) into Eq. ( 9) and expand
ing this in a power series with respect to 
az, ay and a., we obtain the following ex
pression for the free energy up to the fourth 
power of a ; : 

F =I 
N 

=](Q{{1-2 ~~) ~ (5 2-(5.2) )} ~ (az2+ a/) 

+{1-
2{~)(5.2> } ~ a.2 

+....!...(2 ] (Q )) S {.1.(5'-2 5 2(5 2) 
32 kT 8 • 

+2 (5.2) 2- (5.'))(az4 + ~ az2ay2 +ay') 

+(3 (5.2) 2-(5.'))a.' +((5.') 

- (5.2)2)a.2(a/ + 3 az2)} J ' (11) 

where ( 5 .") means the thermal average of 
5." in the presence of only the anisotropy 
energy, namely, 

~ dQ cos"8 exp (-Hal k T ) 
( 5 .") =5" (12) 

~dQ exp ( -Ha!kT) 

At high temperatures, all the coefficient~ 

in Eq. (11) are positive and therefore the 
values of a's which minimize the free energy 
are all zero. As the temperature is lowered, 
the coefficient of a.2 or that of az2 becomes 
negative. Then, a. or az and ay will take a 
non-zero value. 

If the preferred direction of the spin lies 
in the c plane (D > 0), the coefficient of az2 

and a/ first becomes zero at the temperature 
which is determined, in the first order of the 
anisotropy energy, by 

1 2](Q)5 2(1+_!_ fl5 2)=o 
3kT 5 kT . 

(13) 

It should be noted that E and F do not take 
part in this expression. Since ax= ay * O and 
a.=O below this temperature, the spin system 
takes a simple screw structure. This cor
responds to the cases of dysprosium and 
holmium. If the anisotropy energy makes 
the preferred direction of the spin parallel 
to the c axis (D < 0) as is the case for erbium 
and thulium, the coefficient of a . 2 first comes 
to zero. This temperature is determined by 

1- 2](Q)5 2(1-~~D52)=o (14) 
3kT 5 kT . 

Since a.*O and az=ay=O in this case, only 
the z component of the spin oscillates. As 
the temperature is further lowered, the co
efficient of a/ next becomes negat ive. The 
temperature at which this coefficient passes 
through zero is determined in the present 
approximation by 

1-2 ~(~) ~ (5 2 - (5.2)) 

+ 116 e ~(~))a ( (5.')- (5.2)2)a.2 = 0. (15) 

This temperature corresponds to 52°K for 
erbium. Below this temperature the hodo
graph of the spin moment becomes an ellipse 
with its major axis along the c axis. When 
the coefficient of az2 reaches zero, this ellipse 
begins to tilt. This would occur only when 
E and F have appropriate values. At such 
low temperatures, however, the present expan
sion of the free energy would no longer be 
valid. . 

In Eq . (11), Q which characterizes the 
screw structure appears only through ](Q). 
Therefore, the pitch of the screw does not 
vary with temperature in the present ap
proximation. As a matter of fact, the as
sumed form for a ; does not satisfy the self
consistency condition. This means that the 
higher harmonics appear superposed on the 
fundamental tone. For the case in which 
only the z component of the spin is oscil
latory, higher harmonics with odd multiples 
of the fundamental frequency are superposed. 
The amplitude of the lowest higher harmonics 
can be calculated in a similar way by putting 

a;.=a. cos Q·R;+o' cos3 Q·R; , 

(16) 

The result is given by 
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a'=-l(2f(Q))s a,s 
24 kT 2 ](3 Q) 

2 
(
3(S.

2

)

2 

1 kT ( S.) 

- (S.')) . (17) 

It can be seen from this result that this 
component tends to square the fundamental 
sinusoidal modulation because of its negative 
sign. For the screw structures, the G-term 
also contributes the 5-th and the 7-th higher 
harmonics. These higher harmonics have an 
effect of changing the period of the spin 
modulation, but this change of the period is 
smalL 

The quadrupole interaction between nearest
neighbor atoms can also change a pitch of 
the screw. If we take into account this 
quadrupole interaction, the following terms 
are added to the expression for the free 
energy (11), 

4~A(~)\1+i-cos2 Qc'){8 a? +3(a.'+ay') 

+2 a, 2ay2 -8 a.Z(ay2 +3 a, 2)} , (18) 

e2 1 
A=a2( r 2

)
2R

5 
8 (35 n 3' -30 n3

2 + 3) , (19) 

T,=2 ](Q)S 2/3 k, (20) 

where a is a constant determined by L, S 
and ] of the rare-earth ion and was calculat
ed by Stevens, (r 2) the average of r 2 over 
the 4/ radial wave function, R the distance 
between neighboring atoms on two adjacent 
layers, n s the cosine of the angle between 
the c axis and the direction joining these 
two nearest neighbors and c' a ha lf of the 
lattice parameter c. In deriving (18) we 
neglected the anisotropy energy. 

For the case of D > O, namely, a, = ay=a 
and a,= O, the quadrupole contribution (18) 
gives Q the following temperature depen
dence: 

(Q-Qo)c' 27 5 2 A c12 
- 1 

T.-T 10 T.(-d2j (Q)jdQ2)Q=Qo sm
2

Qoc ' 
(21) 

This change of Q is linear in temperature 
in accordance with experimental results 
for dysprosium and holmium. However, 
this change is too small in its magnitude 
compared with the experimental results. 
Therefore, the indirect quadrupole interaction 
might be considered to be a possible source 
of the observed change of Q for these metals. 
But this interaction will also change the 

period of the z-component oscillation as can 
be seen from lEq. (18). No change in the 
period was actually observed in the tempera
ture region of the z-component oscillation for 
erbium. Therefore, the origin of the change 
of the pitch is not clear. 

At low temperatures the higher-order terms 
of anisotropy, E -, F- and G-terms in Eq. ( 1) 
become large. These terms including D-term 
may be small compared with the exchange 
interaction itself, but they may have the 
same order of magnitude as the energy dif
ference between ferromagnetic and screw 
states, namely, S 2{](Q)-] (0)}. For such a 
case somewhat complicated spin orderings 
are expected. 

We calculated the free energies for several 
ordered structures on the basis of the Weiss 
approximation up to the first order of the 
anisotropy energy and compared them with 
each other. Thus, it can be understood that 
the magnetic transitions observed at lower 
temperatures in dysprosium, holmium and 
erbium take place due to the growth of the 
higher-order anisotropy. Namely, in dys
prosium, the axial anisotropy including 
higher-order terms tends to keep the spin 
moment in the c plane. Therefore, in this 
case the screw structure with the rotation 
axis of the spin parallel to the c axis will 
be stable. However, G-term which describes 
the anisotropy in the c plane will lower the 
energy of the ferromagnetic state in its first 
order, whereas this term stabilizes the screw 
state only in its second order. Therefore, 
if G-term is larger than the difference in 
exchange energy between these two states, 
the ferromagnetic state will be more stable 
than the screw state. As the temperature 
is raised, sixth-order G-term decreases more 
rapidly than the exchange energy. Therefore, 
the transition from the ferromagnetic state 
to the screw state takes place. 

In the case of holmium, the second-order 
D-term of anisotropy makes the spin moment 
parallel to the c plane but the fourth-order 
E-term tends to make the moment point to 
a direction tilting to the c axis. Therefore, 
a combined action of these two together with 
the screw-like exchange interaction- is con
sidered , to make a conical structure stable at 
low temperatures. With rising temperature, 
however, the fourth-order term becomes 
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smaller compared with the second-order term. 
Accordingly, the cone becomes gradually flat 
and it is transformed into a simple screw 
structure. This transition is of second kind. 

In the case of erbium, both the second
and fourth-order terms make the preferred 
axis of the spin moment parallel to the c 
axis. The conical spin arrangement found 
below 20°K is, therefore, considered to be 
stabilized by the sixth-order axial term which 
makes the spin moment parallel to a direc
tion between the c axis and the c plane. As 
the temperature rises, the higher-order terms 

of anisotropy energy decrease, and we can 
show that a cyt:;loidal structure with the 
rotation axis of the moment perpendicular 
to the c axis or a screw structure with the 
rotation axis inclining to the c axis is more 
stable than the conical arrangement above a 
certain temperature. This transition will cor
respond to that found at 20°K. 
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DISCUSSION 

B. T. MATTHIAS: Can anyone of these authors predict the magnetic structure of 
the light rare earths from cerium to gadolinium? (Gadolinium has the same crystal 
structure as the elements discussed. ) 

R. ]. ELLIOTT: The light rare earths La-Eu have different crystal structure and so 
both the exchange and anisotropies will be different and so one cannot extrapolate. 

Gd is the same and so should have a similar set of exchange parameters. It is sur
prising it has no spiral but there does seem to be a well defined trend towards ferro
magnetism at this end of the heavy element sequence which is not understood. Tb 
for example is only spiral over a very narrow. temperature range. 

V. }ACCARINO: Why does the momentum dependent exchange interaction have a 
maximum at q=t=- 0? 

K. YosmA : The Fourier transform of the exchange integral has its maximum at a 
non-zero value of q in heavier rare-earth metals. The main contribution to such an 
exchange interaction is considered to come from the indirect exchange through con
duction electrons. However, since this exchange interaction depends on the details 
of the structure of the conduction bands, it would be hard to derive it by calculation. 

J. S. JARRETT: Kittel has recently pointed out that a fourth order in magnetization 
is obtained by taking into account in the free energy both the elastic strain energy 
and the dependence of the exchange parameter on strain. By taking into account 
both first and second nearest neighbour exchange interactions to stabilize the helical 
arrangement of spins, as well as elastic energy, in a linear chain model, one obtains 
the result that the angle between neighbouring spins changes with lattice parameter. 
As I recall the calculation, a 0.1% change in lattice parameter gives a 5° change in angle 
between spins. This result assumes that the change of the exchange interaction per 
unit change in lattice parameter is the same for both first and second nearest neigh
bour interactions. These results seem to be in good agreement with observation of rare 
earth, since the change in lattice parameter, due to normal thermal contraction over 
the temperature range of the observation of the change in angle between spins, is 
probably of the order of 0.1%. 

R. J. ELLIOTT: This could presumably be easily checked experimentally, but I 
shall be surprised if it is as large as suggested. It does not seem to me to account 
for the fact that only the spiral structures show a change of wave length with tem
perature-the longitudinal sine wave arrangements do not. Moreover the pitch of the 
spirals shows the same hysteresis, effects as the magnetisation. 

C. J. GoRTER: The pitch of the screws and cones be influenced by the high terms 
of crystalline anisotropy like v.. Should not this lead to some irregularity of the 
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pitch (and the susceptibility) as a function of th~ temperature in a second approxi
mation? 

R. J. ELLIOTT: Yes, the hexagonal anisotropy certainly distorts the spirals and is 
presumably the cause of the more complicated ordering patterns observed for example 
in Ho. 

J. SMIT: When considering transitions from a spiral or a fanned structure to the 
ferromagnetic state, either induced by a field or not, I think it is of importance to take 
into account the magnetoelastic energy. For a spiral structure the strain is zero, 
whereas, for the completely aligned (ferromagnetic) structure the stress is zero. The 
difference in energy is of the order J. 2E. For Dy the magnetostriction J. is found to 
exceed 10- 3

, so that J. 2E is at least 106 erg/cm3
• Thus the energy of the ferromagnetic 

state is lowered by this amount. It causes the transition to become of the first kind, 
as is observed in Dy. 

D. S. RonBELL: Gadolinium is supposed to be a well behaved rare-earth and usually 
accepted as such. I have recently found some rather interesting behavior that perhaps 
you might comment upon. I have been measuring the magnetocrystalline anisotropy 
of single crystals of gadolinium and find that the easy axis (c-direction) that is ap
propriate to temperatures just below the Curie point (-zoo C) changes abruptly between 
that temperature and 77°K. Since these are preliminary experiments I have not yet 
determined the exact temperature of the transition but it occurs very sharply. Can 
you suggest a reason for this behavior within the theories you have been discussing? 

R. J. ELLIOTT: The magnetic anisotropy in Gd, while it has the same symmetry as 
the crystal field I wrote down, is related to that field in a complicated way, because 
it is an S-state ion. The energy terms are exactly those that appear in the spin 
hamiltonian of Gd salts and extensively in paramagnetic resonance. 

The terms like V,.0 vary as M"' so that the high order terms come in very rapidly 
at low T and thus may account for your effect. 

S. G. CoHEN: I would like to ask to what extent in time one would expect these 
spin ordering patterns to be fixed in the lattice. 

R. J. ELLIOTT: The spin orders incommensurate with the lattice are not fixed ex
cept by domain effects and imperfections. However the neutron observations indicate 
that any motion of this kind is too slow to be observable. 

R. KuBo : I saw some difference between the three papers on the rare earth mag
netism. I wish I could hear discussions on those points where these authors differ 
essentially from one another. 

R. J. ELLIOTT: The main difference between the papers lies in the approximate 
statistical mechanics used on the order-disorder problem. Yosida and Miwa and I 
both derived the same hamiltonian and Kaplan's is a little simplified. However I 
used the simplest order-disorder theory to get an answer at all temperatures and they 
used a more rigorous theory. There is also some difference of opinion about the 
origin of the temperature dependence of the spiral pitch. 

T. A. KAPLAN: Two difference come to mind. Both Yosida-Miwa and myself con
sidered the anisotropy to be small, whereas Elliott used the Ising model , i.e., a large 
anisotropy limit, for the high temperature behaviour in Er. Concerning the two-body 
anisotropy forces (which are important in connection with the thermal variation of 
wave length), Yosida-Miwa considered quadrupolar terms whereas I assumed dipolar 
terms. Both of these symmetries would be expected to arise in a way analogous to 
Van Vleck's "pseud" anisotropies. Since, however, in the present case the relative 
size of spin-orbit coupling and crystalline fields is the opposite of that considered by 
Van Vleck, the coefficients will be of a different form. This certainly should be 
calculated. 

9 
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K. YosmA: One different point between Dr. Kaplan's treatment and ours is in the 
functional form of the anisotropy energy. Dr. Kaplan used the dipole-dipole type of 
anisotropy but we used the one-ion anisotropy which seems to be more realistic for 
rare-earth metals. If one uses the one-ion anisotropy, the temperature change in the 
period of the spin modulation becomes small compared with experimental results. 
On the other hand, according to Dr. Kaplan, if one uses the pseudodipolar anisotropy, 
the temperature dependence of the period can be explained for erbium because the 
ratio of the amplitude of the spin modulation along the c axis to that perpendicular 
to the c axis changes with temperature. However, this type of anisotropy can not 
explain the change of the pitch with temperature for dysprosium and holmium. 

H. SuHL : May I ask the authors of the preceding three papers if they have con
sidered the nature of elementary excitations above the state with the spins all aligned 
along the c-axis but varying sinusoidally in magnitude ? 

R. ]. ELLIOTT : In the paper mentioned at the end of my preprint it is shown that 
when the sine wave is incommensurate with the lattice the elementary excitations 
cannot be conveniently described as waves. For example the ferromagnetic resonance 
will be very broad. 
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1. Introduction in MnAu2 101 . They and also Enz111 developed 
a theory for this phenomenon, but the present 
paper deals with it more generally and with 
more mathematical rigour*>. 

After the discovery of screw spin structure 
by YoshimorP1 (first reported by Nagamiya21 

at the International Conference on Magnet
ism at Grenoble, 1958) and later by Villain31 

and Kaplan•>, a number of substances with 
this structure have been found by neutron 
diffraction experiment. Of particular interest 
are modifications of screw structure found 
in rare earth metals by Oak Ridge people51 

and theoretically interpreted by EllioUS1, 
Kaplan71 , Miwa and Yosida81 , and also by 
Kitano91. These modifications come about 
due to the effect of the anisotropy energy 
inherent in these metals. Another interest
ing phenomenon is the change of screw 
structure due to the action of an applied 
magnetic field, first observed by neutron 
diffraction experiment by Herpin and Meriel 

* Herpin and Meriel assume J, and J2 only and 
further assume that the anisotropy energy is suf
ficiently large to confine the spin vectors in the 
plane of the layers. Enz treats the limiting case 
of qo~O. These restrictions are removed in the 
present paper. Furthermore, the particular cases 
of qo= 180°, goo, 120°, which were not discussed by 
them, are studied in detail in the present paper. 
The merit of the present study lies in the calcula
tion of the fourth order energy terms of Fourier 
amplitudes. For low fields, the fourth order term 
becomes infinite for qo=180° and goo and vanishes 
for qo= l20°, which show that these cases have to 
be dealt with carefully. For high fields, the fourth 
order terms are essentially important when the 
second order terms become negative, namely when 




