PROCEEDINGS OF INTERNATIONAL CONFERENCE ON MAGNETISM AND CRYSTALLOGRAPHY, 1961, VOL. I

Magnetic Properties of Iron-Phosphorus Compounds*

A. J. P. MEYER AND M.-C. CADEVILLE Laboratoire Pierre-Weiss, Institut de Physique Strasbourg, France

Fe₃P, Fe₂P, FeP, FeP₂ have been prepared and their magnetic properties investigated. Fe₃P, Fe₂P and FeP are ferromagnetic with respective Curie points at 716, 266 and 215°K, and absolute moments of 1.84, 1.32 and 0.36 Bohr magnetons per iron atom in the molecules. Fe_(2-e)P is much more difficult to saturate than Fe₂P, but has otherwise the same magnetic properties. In spite of very high anisotropy energies due to the low crystalline symmetries, the coercive fields of the three compounds are limited. FeP₂ seems to be antiferromagnetic.

The phase diagram of Fe and P, shows that whereas at room temperature the solubility of P in α -Fe does not exceed 0.026 at.%, there exist several stable definite compounds: Fe₃P, Fe₂P, FeP, FeP₂ which are respectively tetragonal, hexagonal, orthorhombic and orthorhombic¹⁾. The first two of these compounds have in the past been recognized as ferromagnetics, but no other data than their Curie temperature have been established until now^{2), 8)}. However, in view of the low crystalline symmetry of the compounds, the study of their ferromagnetic properties should be interesting. We prepared and studied the 4 compounds and found that Fe₃P, Fe₂P and FeP are ferromagnetic, whereas FeP₂ is paramagnetic with negative Curie points.

 Fe_3P^{4} has been prepared by high frequency furnace melting of a compressed powder mixture of Fe and P weighed with Fe excess, giving a mixture of Fe₃P and α Fe-P solution which is dissolved out by cold nitric Fe₃P remains as small tetragonal acid. shaped needles, which are easily melted without phosphorus loss, the liquid compound showing a high stability. Fe₂P⁵⁾ has been prepared, following Maronneau's method⁶⁾, by melting a compressed powder mixture of 1Fe, 1P, 9Cu parts in weight. Hot nitric acid dissolves all compounds of the resulting mixture except Fe₂P which remains as small hexagonal shaped needles which are easily melted, showing like Fe₃P a high thermal stability. Prolonged melting at high temperature removes a small quantity of P (0.2% by weight) probably dissolved in the lattice of Fe_2P . Thus we studied Fe_2P and $Fe_{(2-\epsilon)}P$. FeP has been prepared by H₂ reduction of FePO₄ at 800°C⁷⁾. The obtained gray powder can no more be melted without an appreciable phosphorus loss. FeP₂ was obtained by heating in sealed quartz tubes a stoichiometric powder mixture of Fe₃P and P at 1000°C for two hours⁸⁾ giving a fine homogeneous powder which cannot be separated by magnetic sorting. FeP and FeP₂ have been studied in powder form, whereas Fe₃P and Fe₂P were studied in bulk and powder form.

We studied the ferromagnetic and paramagnetic properties of the compounds. The most important data are given in comparative form in Table I.

Fe₃P. This ferromagnetic tetragonal compound has its Curie point θ_f at 443°C in agreement with previous observagood tions^{2),3)}. Thermomagnetic analysis shows the usual ferromagnetic behaviour (Fig. 1). The approach to saturation which obeys a law $\sigma_{H,T} = \sigma_{\infty,T}(1-b/H_i^2)$ is very slow, indicating that the compound is magnetically very hard. At room temperature $b=6.07\times10^6$, $\sigma_{\infty} = 143.8 \text{ e.m.u./gm.}$ and $I_{\infty} = 143.8 \times 7.13 =$ 1025 e.m.u./cm³. Saturation magnetization is $\sigma_{\infty,0^{\circ}K} = 155.4 \text{ e.m.u./gm.}$ leading to a saturation moment M of 1.84 μ_{Bohr} for one iron atom in the molecule. The small tetragonal Fe₃P needles, when placed in a homogeneous field orient themselves with their axes normal to the field, showing that the magnetization vector lies in the basal plane of the tetragonal unit cell. The anisotropy energy has been measured on oriented grains: if simply expressed as $K_1 \sin^2 \theta + K_2 \sin^4 \theta$, one gets $K_1 = -5.3 \times 10^6$ and $K_2 = 2.4 \times 10^6$ ergs/cm³. The coercive field measured on a fixed powder is 107 Oe at room temperature, which indicates a low anisotropy energy in the basal

This paper was not read at the Conference.

*

18	Fe ₃ P	Fe ₂ P	$\mathrm{Fe}_{(2-\mathfrak{g})}\mathrm{P}$	FeP	FeP ₂ T>300°K	FeP ₂ T < 230°K
θ _f ,°K	716	266	266	215	A	
<i>σ</i> ∞,0° K	155.4	103.4	e-Weise, Indifful	23.6	Eabo	
(e.m.u./gm)			tobourg, France.	NIS.		
$M(\mu_B/Fe)$	1.84	1.32	opared and their	0.36	Fell, Fell, Felle	Re.P.
θ _p °K	781	443	437	335	-17 646 9	-56
См	4.23	1.95	1.93	0.496	0.249	0.416
$P_{(\mu_B/Fe)}$	1.94	1.97	1.96	2.00	1.41	1.82

plane of the unit cell. The paramagnetic behaviour above the Curie point is the usual Curie-Weiss law $C = (T - \theta)\chi$. Paramagnetic Curie point θ_p , molecular Curie constant C_M and conventional paramagnetic moment Pare given in Table I.

Fe₂P. This ferromagnetic hexagonal compound has its Curie point at -7° C. Thermomagnetic analysis shows a different behaviour for Fe_2P and $Fe_{(2-\varepsilon)}P$. (Figs. 2, 3, 4). The stoichiometric Fe₂P sample shows the usual parabolic decrease of the magnetization with increasing temperature. The coefficient b of the law of approach $\sigma_{H,T} = \sigma_{\infty,T}(1-b/H_i^2)$ is, as for Fe₃P, very high. At 20°K, $b=1.73\times10^7$ leading to $K_1 = 2.74 \ b^{1/2} I_{\infty} = 8.2 \times 10^6 \ \text{ergs/cm}^3$ if the anisotropy energy is limited to its first term $E_a = K_1 \sin^2 \theta$ and if one neglects tension energies. The magnetization vector lies along the hexagonal axis since the hexagonal Fe₂P needles orient themselves parallel to a homogeneous field. Saturation mag-

netization is $\sigma_{\infty,0^{\circ}K}=103.4 \text{ e.m.u./gm}$ and $I_{\infty,0^{\circ}K}=103.4\times6.85=708 \text{ e.m.u./cm}^3$ leading to a saturation moment of 1.32 μ_{Bohr} for one iron atom in the molecule. The coercive

1000 %

500

Fig. 7.

250

01

field is about 450 Oe at 108°K whereas $H_c = 2K_1/I_s \simeq 2.3 \times 10^4$ Oe. The $\sigma = f(T)$ curves of the non-stoichiometric $\operatorname{Fe}_{(2-e)} P$ sample are unusual as they remain flat over an extended temperature range. The increase of the magnetization in high fields is very slow. As there is a spontaneous magnetization it seems that this behaviour is due to an extreme magnetic hardness of the samples. However, the coercive field is only 220 Oe at 77°K after magnetization in 24000 Oe. Both Fe₂P and Fe_(2-e)P have the usual paramagnetic behaviour above their Curie points with essentially the same constants (Table I).

FeP. This ferromagnetic orthorhombic compound has its Curie point at 215°K (Figs. 5 and 6). Magnetization measurements give $\sigma_{\infty,0^{\circ}K}=23.6$ e.m.u./gm or a saturation moment of 0.36 μ_{Bohr} for the molecule. The field increase of σ is again very slow: at 20°K the rotation coefficient of the law of approach is $b=6.9\times10^7$ leading with the same approximations as for Fe₂P to $K_1\simeq3.3\times10^6$ ergs/cm³. The high temperature paramagnetic behaviour is again usual (Table I).

FeP₂. This orthorhombic compound is paramagnetic in the investigated temperature range from 77 to 900°K. The $1/\chi = f(T)$ graph (Fig. 7) shows an anomaly in the vicinity of 250°K. Above and below this temperature $1/\chi$ varies linearly as a function of *T*, extrapolating to paramagnetic Curie points at -17° K and -56° K (Table I): thus FeP₂ seems to be antiferromagnetic.

References

- 1 M. Hansen: Constitution of Binary Alloys. McGraw-Hill Book Company, New York, 1958.
- 2 H. Le Chatelier and S. Wologdine: Compt. rend. **149** (1919) 709.
- 3 J. L. Haughton: J. Iron Steel Inst. **115** (1927) 417.
- 4 M.-C. Cadeville and A. J. P. Meyer: Compt. rend. **251** (1960) 1621.
- 5 M.-C. Cadeville and A. J. P. Meyer: Compt. rend. **252** (1961) 1124.
- 6 G. Maronneau: Compt. rend. 130 (1900) 657.
- 7 P. Royen and J. Korinth: Z. f. anorg. Chemie 291 (1957) 227.
- 8 W. Franke, K. Meisel and W. Biltz: Z. f. anorg. Chemie 218 (1934) 347.