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Magnetization Energies and Distributions in Ferromagnetics 

P. RHODES, G. RowLANDs* AND D. R. BIRCHALL** 

Physics Department, University of Leeds, England 

This paper gives a review of some recent theoretical work on magnetostatics. In the 
first part methods are outlined for the evaluation of the magnetostatic energies of 
uniformly magnetized bodies. An indication is given of the use of these methods in 
the treatment of the properties of single-domain ferromagnetic particles, in particular, 
particles in the form of rectangular blocks and assemblies of such particles, and dendritic 
particles. The relation between magnetostatic and inductive energies is briefly discussed 
and the feasibility of determining magnetostatic energies of domain structures by 
measuring inductances is indicated. 

In the second part a method for the calculation of the distribution of magnetization 
in cylindrical rods is outlined, and it is shown that the results are in good agree
ment with experiment. 

1. Introduction 
This paper gives a brief review of some 

recent theoretical work at Leeds on magneto
statics and its applications. In the first part 
(§ 2) an account is given of methods for the 
evaluation of magnetostatic energies of 
uniformly magnetized bodies and of certain 
domain structures. Also, an indication is 
given of the application of the results to 
the treatment of the properties of single
domain ferromagnetic particles and of assem
blies of such particles. In the second part (§ 3) 
a method is described for the calculation of 
the distribution of magnetization in cylindri
cal rods. 

2. Evaluation of Magnetostatic Energies 

Introduction. Magnetostatic energies play 
an important part in the determination of 
the domain structures and low- and medium
field properties of ferromagnetics, but the 
calculation of these energies is often difficult. 
The problems involved are made somewhat 
more tractable if it can be assumed that the 
magnetization within a body, or a domain, 
is uniform. In general, it is only for an 
ellipsoid that a uniform applied field leads to 
uniform magnetization and demagnetizing 
field.ll Nevertheless, even for non-ellipsoidal 
bodies there are cases of interest when the 
magnetization may be treated as uniform, 
although the demagnetizing field may not be 
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so. Such cases arise, for example, in the 
consideration of very small particles, and of 
domains in materials with high magneto
crystalline anisotropy. Although the approx
imation of uniformity of magnetization is 
adopted in the methods for evaluating mag
netostatic energies discussed below, the re
sults obtained have a much wider bearing. 

' Magnetic charge ' method 

The potential associated with the magneti
zation of a body may be expressed in the 
form2> 

V=~-;-ds+~-;-dv (2.1) 

where a=l·n and p=-div I are surface and 
volume ' magnetic charge ' densities. The 
magnetostatic energy of the body, or the 
mutual energy of two bodies, can then be 
expressed in terms of the self- and mutual 
energies of these charges. The use of this 
method may be illustrated by the following 
examples. 

(i) Rectangular blocks. For a block uni
formly magnetized to intensity / 0 parallel to 
one edge the only ' charges ' are uniform 
surface charges of density ±lo on two op
posite faces of the block. The magnetostatic 
energy of the block is then given by the 
sum of the self-energies of these two surface 
charges and the (negative) mutual energy 
between them. Using an analytical expres
sion which has been derived2

> for the mutual 
energy of two similarly oriented, uniformly 
charged rectangular plane areas, it has been 
possible in this way to calculate the magneto-
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static energies, and hence the ' effective 
demagnetizing factors' 2> and 'shape aniso
tropy factors' s> of rectangular blocks. The 
'effective demagnetizing factor ' , N, asso
ciated with a particular direction in a uni
formly magnetized body is defined to be such 
that the magnetostatic energy per unit volume 
of body when / 0 lies in that direction is 
!N/0

2 • It can then be shown (Rowlands8>, 
Brown and Morrish•> ) that, for a body of 
arbitrary shape, the sum of theN's associated 
with any three orthogonal directions is 4rr. 
The ' shape anisotropy factor ', LJN, for a 
block of square cross-section is defined, by 
analogy with that for a spheroid, to be the 
difference between the effective demagnetiz
ing factors along and perpendicular to the 
long axis of the block. For a single-domain 
particle in which magnetization changes 
occur by uniform rotation of the magnetiza
tion vector, and in which magnetocrystalline 
and strain anisotropy are negligible, the 
coercivity is proportional to L1N8>. 

In Fig. 1 the calculated shape anisotropy 
factors for rectangular blocks are shown as 
a function of the dimensional ratio, together 
with those for prolate spheroids5> and cylin
ders8>6> (see below). Although there are dif
ferences in detail between the three sets of 
results, the general agreement over most of 
the range suggests that it is a reasonable 
approximation to treat single-domain parti
cles which are roughly ellipsoidal in shape 
as rectangular blocks. This often simplifies 
the theoretical treatment of their properties. 

z . 
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Fig. 1. Shape anisotropy factors, 4N, of uni
formly magnetized rectangular blocks (R), 
spheroids (E) and cylinders (C) as functions of 
the dimensional ratio, m . The broken line 
shows the limiting value, 27t, which all the 
curves approach as m-oo. 

(ii) Dendritic particles. By an extension 
of the method outlined in (i) it has been 
possible to calculate'> the shape anisotropy 
factors of bodies in the form of rectangular 
blocks with rectangular 'branches' (see Fig. 
2). These approximate in shape to the 
dendritic particles which are often observed 
in electron micrographs of small ferromag
netic particles. A typical set of results, for 
a particle with a 'trunk' with dimensions 
(a x a x 12a) and 'branches' (a x a x 2a), is 
shown in fig. 2. The branches are assumed 
to be added symmetrically in pairs ; particles 
with 0 and 12 branches correspond to solid 
rectangular blocks with dimensions (a X a 
x 12a) and (a x 3a x 12a), respectively. 
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Fig . 2. Shape anisotropy factor, 4 N, of a uni
formly magnetized dendritic particle as a 
function of the number of branches, n. The 
broken lines correspond to the values of 4N for 
ellipsoids with the same dimensional ratios as 
the corresponding blocks. The inset figure 
shows a particle with n = 4. 

As may be seen from the figure, the values 
of LJN may be considerably smaller than those 
which might be estimated by considering 
ellipsoids, either by neglecting the branches 
or by taking the enclosing ellipsoid. Hence, 
for a particle in which magnetization changes 
occur by uniform rotation the coercivity 
will be correspondingly smaller than that 
estimated from the dimensions of such 
ellipsoids. 

(iii) Particle interaction. By a further 
extension of the method outlined in (i) cal
culations have also been made'> of the 
magnetostatic energies of various assemblies 
of uniformly magnetized rectangular blocks, 
and the results used in considering the effects 
of particle interaction on the coercivity of 
such assemblies. From the detailed calcula-
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tions for several particular configurations of 
blocks it is found that these effects depend 
strongly on the configuration of the blocks 
within the assembly, but it is not possible 
to summarize the results briefly. 

Inductance analogy method 

It can be shown31 that there are simple 
relations between (a) the magnetostatic ener
gies of uniformly magnetized bodies, (b) 
'magnetic charge energies' and (c) the in
ductive energies of uniformly wound coils. 
(An independent derivation of the relation 
between magnetostatic and inductive energies 
has been given by Brown61 .) These provide 
a means of correlating31 various earlier 
results of calculations of inductance coeffi
cients and of evaluating magnetostatic ener
gies from those coefficients3161 • For example, 
from tabulated81 self-inductance coefficients 
of cylindrical coils values can be derived for 
the mutual energy of two uniformly charged 
coaxial discs as a function of their separa
tion, and these can then be used to evaluate 
the mutual inductance of two coaxial coils, 
or to calculate the magnetostatic energies of 
uniformly magnetized cylinders. The values 
of LlN for cylinders shown in figure 1 were 
found in this way. 

In other cases, where the appropriate in
ductance coefficients have not been calcu
lated, it may be possible to evaluate ' charge 
energies,' and hence magnetostatic energies 
of domain structures, by measuring suitable 
self- and mutual inductances. In order to 
investigate the feasibility of this method 
some measurements have been made31 with 
single-layer coils of rectangular cross·section. 
It was found possible to obtain ' charge 
energies' accurate to ± 0.3%, and the method, 
therefore, seems practicable. It may be 
particularly useful in the study of domain 
structure in small particles containing only 
a few domains. 

3. Distribution of Magnetization in Cylindri· 
cal rods 

Introduction. As mentioned in § 2, for 
large·scale specimens it is only for ellipsoids 
that a uniform applied field leads to uniform 
magnetization. In many applications of 
magnetic materials, however, the specimens 
are not in that form and it is of some im-

portance to be able to calculate the distribu
tion of magnetization within them. As a 
first step in the investigation of this general 
problem the particular case of cylindrical 
rods of material with constant susceptibility 
has been considered. The results of previous 
calculations91101 do not, in general, agree well 
with measured values, and a self-consistent 
method of calculation has now been developed. 

Method. For a material with constant 
susceptibility, "• the magnetization at any 
point in the body is given by 

l="Ht =K(Ha+Hd), (3.1) 

where Ht, Ha and H d are the total, applied 
and demagnetizing fields at that point. Also, 

div B = div(Ht+4rrl)=O (3.2) 

Then, for a cylinder in a uniform, axial 
applied field, writing Hd = -grad V and using 
cylindrical polar coordinates, 

1 a ( av) a2 v -y Tr r--a;- +~=0. (3.3) 

Using (3.3), it can be shown that the poten
tial at any point in the cylinder, V(z, r), is 
related to that on the axis, V(z, 0), by 

Vi( ) ,;{ (-1)k d2k~~~,O)}r2k. (3.4) 
z, r =eo 22k(k! )2 

In the present work V(z, 0) has been ex
pressed as a terminating power series of the 
form 

Vo(z, 0)= ±c2H,z2i+l. 
j = O 

(3.5) 

From (3.1)-(3.5), Hd and hence I, at any 
point can be expressed in terms of the 
coefficients, C2i+I· Then V(z, 0) can be re
calculated by means of (2.1) to give, say, 
V,(z, 0). The values of the c2i+1 are then 
chosen so as to minimize the difference bet
ween Vo(z, 0) and V,(z, 0). In the present 
work the quantity minimized was .2:[ Vo(z;.o) 

; 

- V,(z;.o)J2 , where the z; correspond to 21 
equi-spaced points on a semi-axis of the 
cylinder. 

Potential functions have been determined71 

by this method for cylinders with dimension
al ratios in the range 1-500 and suscepti
bilities in the range 0.1 - 5 x 10'. The calcu
lations were made with the aid of an electro
nic computer, and the number of terms used 
in (3.5) was in the range 3-12. From these 
potential functions a variety of properties of 
the cylinder can be calculated. As an ex-
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ample, the distribution of the axial compo
nent of magnetization of a rod with dimen
sional ratio 50 is shown in Fig. 3 for several 
values of susceptibility. Also in Fig. 3 are 
some experimental results due to Bozarth 
and Chapin11 ' for an unannealed permalloy 
rod with approximately constant susceptibi
lity. The agreement between the calculated 
and measured variations is good, and is much 
better than that found using the results of 
previous calculations. 

The method outlined above can also be 
extended to apply to permanently magnetized 
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Fig. 3. The axial component of magnetization of 

a cylindrical rod , with dimensional ratio 50, as 
a function of distance from the centre along 
the axis. The numbers on the curves show 
the values of the susceptibility. The broken 
curve shows the measured variation for a rod 
with dimensional ratio 52.4 and susceptibility 
approximately 6.5 (Bozorth and ChapinC11l). 
( = z/ a, where 2a is the length of the rod. 

cylinders and to cylinders in which the 
susceptibilities in the axial and radial direc
tion are not equal. 
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DISCUSSION 

W. F. BRowN : 1. I congratulate Dr. Rhodes and his colleagues on their systematic 
handling of the cylinder of constant permeability. As far as I know the only rigo
rously solved problems for bodies of constant permeability in a constant applied field 
are the ellipsoid, the limiting case of zero susceptibility, and the limiting case of 
infinite susceptibility for the transversely magnetized infinite rectangular bar. 

2. I am glad to see magnetic charges (poles) and equivalent currents used on the 
basis of convenience rather than of some supposed greater significance of one or the 
other. Text book writers and pedagogues have misled us in this respect by their 
over-enthusiasm, in the last decade or two, for Amperian currents as against poles. 

3. Coils can be used as analogs not only to pole distributions, but to mass distri
butions as sources of gravitational fields. This principle has applications in geophy
sical prospecting. 

K. HosELITZ : The authors have calculated the demagnetizing factors for particles 
with dendrites: One can use their data to estimate the coercive force of uniformly 
magnetized particles such as those produced by the E. S. D process at the General 
Electric Research Laboratories, Schenectady. How does the present calculation com
pare with the observed coercive forces, which can quite easily be explained by the 
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process of non-uniform demagnetization (for instance fanning with the chain of sphere 
model). Is there any criterion such as particle interaction which allows us to decide 
whether the changes in magnetization are uniform or non-uniform, since the coercive 
force can now be explained by their model ? 

P. RHODES: For sufficiently small particles magnetization changes will take place 
by uniform rotation and the coercivity is then determined directly by the calculated 
shape anisotropy factor. 
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Magnetic Image Contrast in Electron Mirror Microscopy 

LUDWIG MAYER 
General Mills , Inc. , Electronics Group, Minneapolis 13 

Minnesota, U.S.A. 

The feasibility of electron mirror microscopy for visual observation of magnetic stray 
fields on surfaces will be demonstrated. Magnetic image contrast as well as the criteria 
which permit the discrimination of magnetic patterns from patterns of other origin will 
be briefly discussed. Electron mirror micrographs of domain patterns and of magnetic 
patterns recorded on magnetic tapes and films will be shown. A motion picture depicting 
magnetic domains in motion as well as emerging magnetic stray fields on g rain boundaries 
in silicon iron will also be presented . 

Electron optical methods for visual obser
vation of magnetic domains have been in
troduced only rather recently. This is some
what surprising because even conventional 
electron transmission microscopy can be uti
lized for this purpose as Hale, et al.' ' , 
Boersch, et al. 2

' and others3
' have shown. 

Transmission microscopy requires, of course, 
specimens thin enough to be penetrated by 
electrons. If this is not the case, one must 
rely on electron optical methods which depict 
surfaces. Electron emission microscopy can 
then be used as an instrument for the ob
servation of magnetic domains as Spivak, et 
al." have shown. Another possibility is elec
tron mirror microscopy5l which can be uti
lized not only for the visual observation of 
the distribution of such electrical properties 
as surface potentials, conductivities, etc., but 
serves equally well in depicting magnetic 
domain patterns6 ' and artificial magnetic pat
terns recorded on magnetic media' ' . 

In electron mirror microscopy the specimen 
constitutes an electron optical mirror biased 
slightly negative with respect to the electron 

source, i.e., the cathode. The electrons 
therefore do not reach the mirror-specimen 
but are reflected at the zero equipotential 
which is to be located close enough to the 
specimen to carry the geometric relief and 
the magnetic or electrical relief of the speci
men proper. In the magnetic case the image 
contrast forming deflection is caused by that 
component (F= er B.) of the Lorentz force F 
which stems from the interaction of the 
magnetic field normal to the plane of the 
mirror-specimen (B .) with the radial com
ponent of the electrons' velocity (r ). The 
sensitivity of electron mirror microscopy to 
magnetic fields is therefore zero at the electri
cal center of the mirror-specimen, i.e., where 
the radial component of the electrons' veloci
ty becomes zero. This feature, which might 
appear detrimental, is actually advantageous 
because it establishes a convenient criterion 
for distinguishing patterns of magnetic origin 
from patterns which stem from the geome
trical relief structure or from those which 
are of electrical origin. The procedure for 
determining whether a pattern is of magne-




