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In the classical interpretation of electron 
diffraction diagrams, diffraction is a purely 
coherent phenomenon and therefore crystal
lographic data can be obtained from the dif
fraction diagram by assuming a wave length 
derived from the accelerating potential of the 
electrons. This picture has been subsequent
ly modified with the recognition that inelastic 
processes are taking place in the specimen. 
My talk today deals essentially with these 
inelastic processes and describes, in the out
line at least, part of our present knowledge. 
I say part, because obviously in such a short 
talk I cannot cover all aspects of it. I trust, 
however, that in several of the papers given 
at this symposium the missing parts will be 
covered by the eminent scientists present who 
carried out a very good portion of that work 
themselves. 

It has been recognized in the past ten or 
twenty years that electrons of any velocity, 
interacting with solids, suffer energy losses 
which are characteristic for that solid. They 
are characteristic in the sense that in some 
substances the energy losses have rather 
sharp, well-defined values. An example of 
such a behavior is shown in Fig. 1. Fig. 1 
illustrates aluminum as a sample, and the 
primary electrons have 20 kev energy. A cer
tain number of these electrons pass through I 
the sample without any visible inelastic inter· 

action. These constitute the truly coherent. 
elastic part of the radiation which is con
sidered in the classical interpretation of dif
fraction. A certain proportion of the primary 
electrons, however, interact with the charges 
distributed in the solid and produce a well
defined electron loss at 15 ev. To understand 
the scale of Fig. 1, this means that the second 
peak corresponds to electrons having an en
ergy of 19,985 ev. This effect can be ac
curately described as a single inelastic colli
sion with simple energy and momentum 
transfer; because of the nature of such pro
cesses, repeated collisions may occur and in
deed we find that all the peaks of the graph 
correspond to 30 ev, 45 ev, and higher mul
tiples of a single energy loss. 

Fig. 1 shows these energy losses in the 
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Fig. 1. Aluminum spectrum. 
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direction of the central spot of the diffrac
tion diagram in direct transmission through 
the thin film. The angular range is very 
much restricted, sometimes around a fraction 
of a milliradian. 

Now obviously those engaged in electron 
diffraction work are not interested in the cen
ter spot alone. They are interested in the be
havior at relatively large angles when looking 
at the conventional Debye-Scherrer diagram 
Fig. 2. We may now tilt the diffraction dia
gram by almost 90 degrees and then de
compose the energy components in different 

Fig. 2. Aluminum diffraction diag ram . 

Fig. 3. Aluminum; decomposition of 
diffraction diagram. 

planes. The result may be something like in 
Fig. 3, where the top of the figure shows the 
two innermost rings together with the center 
spot greatly inclined and the different energy 
components represented by the various rings 
and their shadings downward from the top
most ring. Therefore, the second ring sys
tem from the top corresponds to electrons 
having lost 15 ev of their initial energy. The 
next corresponds to electrons having lost 30, 
and so on. The prominent features of this 
figure, besides the rings, are the gradually ex
panding center spot, expanding and diminish
ing in intensity, and a continuous background 
which connects the space between the first 
and all consecutive planes. Although until 
now I mentioned only the characteristic losses 
which occur in multiples of a primary loss, I 
have shown in Fig. 3 a little bit of continuous 
loss which I ask you to disregard for the time 
being. This is due to a different mechanism. 
We may come back later to this point in our 
discussion. If we take a slice out of this mo
del, from the axis outward, we obtain the con
tour plot represented in Fig. 4 where energy 
loss is the ordinate, angle is the abcissa, in
tensity is represented by constant intensity 
contours, the scale of these constant intensity 
contours being logarithmic . 

Aluminum and a certain number of other 
materials are characterized by the sharpness 
of the loss and by relatively high cross sec
tion for the inelastic event. This is not true 
for all solids, however. In many materials, 
while the characteristic loss may be sharp, 
the cross section is considerably lower than 

Fig. 4. Cartograph. 
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in aluminum and magnesium. Many other 
materials do not have a sharp characteristic 
energy loss. In these materia ls the charac
teristic loss is a somewhat washed out broad 
band, as for instance shown in Fig . 5. The 
washed out broad characteristic peak may be 
described as another t ype of contr ibut ing phe
nomenon. It must be emphasized, however , 
that a ll materia ls investigated until now show 
characteristic losses. T here is no exception 
until now to that rule. 
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F ig . 5 . Ca rbon spectrum. 

A few words about interpretation of these 
characteristic energy losses. If we assume 
that the charges distributed throughout" ·the 
solids constitute a kind of solid state plasma, 
which can be excited to collective oscillation 
by the incoming electron, the theory of Bohm 
and P ines gives for the f requency of this oscil
lation*. 

where e is t he charge, m the mass of the 
e lectron and N is the density of electrons par
ticipating in this collective oscillation . These 
plasma oscillations are longitudinal oscilla
tions and one may expect a possible coupling 
with transverse oscillations to take place. The 
frequency of such transverse oscillations can 
be calculated to be 

* We will show la te r that the same equat ion can 
be obtained s tarting from different considera tions . 
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F ig . 6. A lum inum s pectrum showing 
low- lying loss. 

W p Wt=-v-z, 
ass uming that the solid has a plane face, which 
is bounded by a vacuum. The frequency being 
lower than the mean plasma oscillation, it is 
customary to ca ll these transverse oscillations 
" low-lying losses" . F ig. 6 shows that these 
low-lying losses can be observed, but that 
their cross section is much smaller at t he re
latively high energies of diffraction investiga
tions t han the main plasma oscilla tion and for 
all that ensues in our discussion , t hey can be 
neglected. 

The continuous st udy of t he characteri stic 
energy losses is pursued in different labora
tories all over the wor ld including some ex
cellent works done in Japan. 

Now we turn our attention to somewhat 
more quantitative aspects of these charac
teristic energy losses. The contemplation of 
F ig . 1 has already shown that there must be 
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Fig . 7. Aluminum spectrum illustrating 
Poisson dis tribut ion . 
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some relation of the intensities of the succes
sive multiple losses and these are brought 
out more clearly in Fig. 7. If the successive 
losses · are independent collisions, Poisson's 
law should apply and we should be able to 
describe the successive intensities of higher 
peaks by the well-known Poisson distribution: 

P (!..) = _1 (!..)N e-tl" 
A N! A ' 

where t is the thickness of the specimen, A is 
the mean free path of the electron in the 
material at the selected primary energy, and 
N is the number of inelastic collisions which 
can be 0, 1, 2, 3, all the way to infinity. Dif
ferent laboratories have followed this up. In 
our laboratory, Dr. Fowler, in particular, has 
done extensive determinations jointly with 
Mr. Swanson. Fig. 8 shows the agreement 
between the theoretical curve and the ob
served points for a relatively thick specimen 
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Fig. 8. Comparison between observed distribution 
and calculated Possion distribution. 

of aluminum. A series of such determina
tions give a mean free path for 20 kev elec
trons in aluminum to be 810 ± 60 angstroms. 
For the same material , Birkhoff and collabo
rators find about 590± 185 angstroms at 30 
kev. In considering the difficulties of this 
type of measurement, the agreement is re
markably good. 

Careful investigation of the angular distri-

bution of these multiple losses has been car
ried out, by Watanabe in Tokyo, Arai in Sen
dai, Fowler, Swanson, Simpson, and myself 
at the National Bureau of Standards, and 
Fig. 9 illustrates the type of behavior in the 
central diffraction spot. The innermost solid 
line represents the angular distribution of the 
purely elastic part of the electron beam. The 
first curve surrounding the elastic distribu
tion is the normalized angular distribution of 
the first loss line; this is surrounded then by 
the second loss line, the third loss line, and 
so on. The solid curves are calculated dis
tributions on the assumption that the elastic 
peaks represent zeroth order diffraction, from 
which one can obtain the first, second, third 
loss distributions by a simple folding process. 
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Fig. 9. Normalized angular distributions. N =O. 
elastic peak distribution. N = 1, first charac
teristic loss. N = 2, second characteristic loss. 
N = 3, third characteristic loss. 

assuming a Coulomb interaction with the 
usual energy and momentum conservation 
laws. The cross section for the inelastic: 
process may be expressed as 

f (B ) 8
FJ 

- oc 8 a2+ f3 2 ' 

where 

L1E 
Ba= 2E. 

An important point in all this is that if we ex
amine similar normalized curves for angular 
distributions, we find that both the elastic and 
the inelastic angular distributions are inde-· 
pendent of thickness and vary only with the 
angular spread of the incident beam as pre-

• 
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..dieted by Wentzel's plural scattering theory. 
All this leads to the following model for the 
plural scattering process: the elastic intensity 
results from a coherent diffraction into the 

.zero order central spot with zero momentum 
transfer, whereas inelastic intensity is ob· 
tained from random incoherent plural scatter· 
ing, where the angular distribution is de· 
scribed by folding with the differential cross 
:section for single inelastic scattering. It could 
be mentioned that this interpretation is con· 
:sistent with the interpretation of Kikuchi line 
_patterns employed by Shinohara. 

We next consider these energy losses from 
a broader point of view. We are dealing with 
a class of phenomena which we may ascribe 
. to "long range interactions" - that is the mo· 
mentum changes are small as compared with 
reciprocal interatomic distances. Therefore 
·we can ascribe to the medium a parameter 
which describes its response to electromag· 
n etic excitation- the frequency dependent die· 
1ectric constant c(w). We will assume that 
·for the cases which we consider c is inde· 
pendent of the momentum transferred during 
.an interaction. Most of us are familiar with 
this parameter when it is expressed in terms 
-of the refractive index n, and the extinction 
.coefficient k. Thus 

c(w)= c1(w)+ic2(w)=(n + ik)2, 
c1(w)=Re c=(n2-k2) , 
c2(w)= Im c=2nk. 

'The probability of optical absorption is pro· 
portional to wlm c, where w is the circular fre· 
.quency of the photon with energy hw. The 
probability of energy absorption from the 
e lectron beam is proportional to 

1 Imc rm-;-=-w. 
'The reason for the dielectric constant appear· 
ing in the denominator is that the force 
e xerted by the incident electron upon the 
·charges within the scatterer is attenuated by 
the surrounding medium. Of course this is 
restricted to long range interactions. If one 
now considers an infinite plasma of elec· 
trons neutralized by a background of positive 
-charges as a model for the medium, then it 
is found that the frequency-dependent dielec· 
i:ric constant tends to vanish at 

w= wv= / 4rrNe
2 

, 

f m . 

where N is the density of electrons, e the 
electronic charge, and m the mass of the 
electron. At this frequency, we have a peak 
of the plasma frequency Im(l /c) and an absorp· 
tion maximum in the electron absorption 
spectrum. This is the "bulk" type of plasma 
oscillation. If the plasma is bounded by an in
finite plane by a dielectric medium with die
lectric constant cb, there may occur a different 
discrete loss at a lower energy 

E hwv 
tt= Vl+cb · 

If the bounding medium is the vacuum cb = l, 
then 

E 
nwp 

tt -> vz . 
This lower lying loss is due to a coupling 
with the transverse components of the elec
tromagnetic interaction whereas the main loss 
arises from the longitudinal modes of the elec
tromagnetic interaction. 

Of course if the medium cannot be described 
by such a simple model, there may occur loss 
peaks of varying sharpness and heights de
pending upon the variation of both the real 
and imaginary parts of c as a function of 
frequency. Also, the energy for the low ly
ing loss is not given accurately by the above 
simple formula but rather by a much more 
complicated implicit transcendental equation. 

This formulation accounts for the various 
features of the characteristic electron energy 
loss spectra. 

The consequence of this consideration is 
that, if we know the complex dielectric con
stant versus frequency, we can describe both 
the optical behavior and the electron induced 
oscillations over a wide range of frequencies. 
This means that if we know sufficiently well 
the optical constants we can predict the en
ergy losses and vice versa. Work is under 
way for extensive comparison of these two 
properties, although it is considerably ham
pered by the fact that no two measurements 
have been carried out on the identical sample. 
Under such conditions the comparisons are 
often meaningless. For instance, extensive 
measurements are available in the literature 
on the optical constants of germanium. 
A careful comparison with the electron ener· 
gy loss behavior seems to indicate that prac
tically all optical measurements published so 
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far are for germanium contaminated with 
germanium oxide. Many more examples of 
this kind could be cited. Under these condi
tions the only thing to do is to repeat the 
measurements under very well-controlled con
ditions on the identical sample and that is 
what we are in the process of doing. 

In all the preceding treatment, I have lim
ited myself essentially to the treatment of 
the central spot or very close to the intense 
distribution in the central spot, and only in 
the introductory part of my talk did I extend 
to the treatment of the diffraction rings. This 
I did for the simple reason that most of our 
information is available at angles close to the 
central spot and the total amount of informa
tion at diffraction angles limited because of 

the great reduction in intensity. One can 
however state, even now, that the spots or 
rings in the diffraction pattern will show a 
similar broadening due to the same random 
inelastic scattering; that the dominant broad
ening is due to a transverse momentum ac
quired in the inelastic collision, rather than 
to a change in wave length in the elastic dif
fraction process. These are all logical de
velopments of the theory used to interpret the 
angular dependence of the aluminum spectra. 

In preparing this presentation the author 
had many discussions with his colleagues Drs. 
H. A. Fowler and H. Mendlowitz. Their con
tributions to this paper have been very great 
and I take pleasure in acknowledging the im
portant part played by them. 

DISCUSSION 

H. RAETHER : (1) For the comparison of your results with ours, I may add that we 
have used a beam of angular width of 1.5 X 10- <, so that we can derive immediately 
the -B-1 12 value without folding the secondary distribution with the primary distribution. 
Which value of -B-1 ;2 have you obtained and do they agree with the theoretical value 
&-1 ;2= f1E/2Eo? 

(2) If one applies Poisson distribution to derive the mean free path of inelastic 
scattering Qinei, one has to integrate the inelastic intensity from 0 to 180°. The con
tribution of the large angles is not to be neglected. Thus, the high value of your 
observed value compared with theoretical value of Qinei is understandable. 

L. MARTON: (1) I compared the angular distributions given in your paper, and 
found that our 10% values of normalized intensities are rather close to yours. Fur
thermore, I firmly believe that a folding process as described in our paper is a proper 
way to describe the multiple process as it is in close agreement with Wentzel's theory 
of plural scattering. 

(2) We are integrating over ± 5 milliradians so as to include almost completely 
the tails of the inelastic distributions. 

M. BLACKMAN: Have you measured the elastic mean free path for aluminium and' 
how does this agree with theory? 

L. MARTON: We have not measured any cross-section, but limited ourselves to in
elastic mean free path determination. 




