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Intensity Calculation by Expansion of Scattering Matrix 

FuMINORI FuJIMOTo 

Institute of Physics, College of General Education 
University of Tokyo, Komaba Tokyo, Japan 

A new formulation of the intensity calculation of electron diffraction by scattering 
matrix which is applicable to thicker crystal is obtained with the use of the Feynman 
expansion. The results are compared with Bethe's 2nd approximation. It is shown that 
this method is practically useful so far as vu!bt2 (v~: Fourier potential, b1: reciprocal 
lattice vector) is small. 

h,O-component of the following matrix, 

exp(i~M). (1) 

The scattering matrix method in electron 
diffraction was developed by Sturkeyu, 
Niehrs21 and the present author31 ·51 . More 
recently, the author extended this method 
.and calculated the intensity of the reflected 
wave applying the Feynman expansion to the 
-scattering matrix41 • This expansion is, how­
~ver, not suitable for the intensity calcula­
tion of reflected wave from a thick crystal, 
since each term of the expansion diverges 
.at large thickness. The aim of the present 
paper is to deduce the formula which is ap­
-plicable even to a thick crystal. 

Here, D is the thickness of crystal, k=2rr/J., 
and M the matrix whose elements are Mhu= 
Vh-u(h*g) and M""=P"=2kph, where v is the 
Fourier potential multiplied by 8rr2m/h2 , and 
Ph "Anregungsfehler". If the matrix M can 
be expressed in the form, 

( 2) 

In the Laue-case of electron diffraction, 
the amplitude of the h-wave is given by the 

with M0 having non-degenerate eigenvalue, 
the amplitude of the h-wave calculated from 
the Feynman expansion is 

+¢hi¢9i*<fttii/Jmi*ljJ,,kcjJ0k* + 1/Jhii/Ji*ifJLkifJmk* ljJ,,iljJ0i*) ( . -~( . k) + _L; (ijJ,.iljJgi*ljJli¢mi*ljJ.,iljJ0i* 
x'-x1 x'-x J <'>"il 

+ifJhiifJui*ifJtiifJmi*ijJ.,i¢o;* +I/JhiifJui*ifJtiifJmi*ljJ.,i¢oi*)(i ~ (xi ~xi) (x' _!xi)2 ) 

-; ( ~ Y I/Jh
11/J91*1/Jt11/Jm1*1/J,.11/Jo1* }M~1M;,,.exp(i ~ x•)+ .. · , ( 3) 

where ¢"' is the component of the eigenvector ljJi of Mo, x' the corresponding eigenvalue, 
.and * indicates the conjugate complex. 

On the other hand, the amplitude of the h-wave is given by 

where U"' is the amplitude of the h-wave belonging to the i-th wave field, and U,.' and X' 
may be written as 

U"'=u~(OI +tu~(l) +t2U~ < 21 + · · • 

x•=xfo) +cxf!) +c2xf2) + ... 

Substitution from (5) to (4) leads to 
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( 5) 
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If!"=~ [u~ ,o> +c:( u1(l l +i ~ u1 (0lxf1>) +c:2
{ ui,2> +i ~ (u~,1 >Xil) +u~,0>Xi2 > ) 

- ; ( ~ yui,0/xfll)2}+ · · · Jexp (i ~ xfo> ) . ( 6 ) 

Equating the coefficients of each power of c: in (3) and (6), we easily obtain 

{u1(ol=¢hi¢oi* 
X(0l=X' 

iuf.(ll= 2: 2: (¢h'¢ui*¢li¢oi*+¢hi¢ui*¢li¢oi*) x~~xl i 
g.l j(,.i) -

x\1! = 2: ¢u'*¢liM~l 
g,l 

etc. 

Putting c:=l in (5), we get the amplitudes 
belonging to each wave field and eigenvalue. 
The boundary conditions are satisfied for 
each order of perturbation, i.e. 2: u1 ,,.> =0 

(h, n =F 0) and 2: u~,o> = 1. 

In order to consider the physical meaning 
of each term of (5), we take Mo as 

P h-a 0 Vh-2g 

P o V - h 

Mo= 0 0 ( 8) 
Vh p,. 

V2g-h 0 Po 

in which Po= Ph, Pu=Ph-o, · · ·, and v's are as­
sumed to be real, for simplicity. Then, 0 
and h-waves, h-g and g·waves, · · · constitute 
the pairs of resonance states, respectively. 
The order of each term in the Feynman ex­
pansion (3) corresponds to how many times 
the interaction appears in it. Therefore, we 
see that the second order term in (5) ap-

proximately involves the multiple times of 
interaction among 0, h-group and other ones . 
(the first order one vanishes in this case). 
The second order term of the eigenvalue 

' "" "" ,,, i*''' j,,, i*''' ; M~~M;,.,. 
X (2) = ~ ~ 't'D 't'l 'f'm 't'n · · 

g ,l,m ,n j (,.i) X'- X 3 

is the same as that deduced from the Bethe's. 
third order approximation, and Xi= xio> + xf2> 
represents the dynamic potential. 

It is difficult to discuss the convergence of 
the series in (5). Therefore, the intensity 
for the following three cases where the effect 
of other reflection waves may be large were 
calculated. In Table, the numerical values 
are shown. 

Table. Values of v"',,.fb~11 • 

111 1 222 333 1 444 1 555 

Ge 0.563 0 -0.184 
AI 0.214 0.073 0.036 0.018 0.009 
Au 0.770 0.362 0.190 0.092 0.059 

Case I. The forbidden 222-refiection from 
Ge at the Bragg position. 

As the unperturbed crystal potential, we 
take the sinusoidal type as 
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P-2 vi 

v i P -i Vi 0 

Mo= Vi P o vi 

0 vi pi Vi 

Vi p2 

( 9) 

In this case, we can obtain the exact solu­
tion with use of the Mathieu function. In 
the perturbation matrix, we take only the 
.333-potential as given by 

0 0 0 Va 0 

0 0 0 0 Va 

M'= 
0 0 0 0 0 Va 

Va 0 0 0 0 0 

Va 0 0 0 0 

0 Va 0 0 0 

(10) 

The results are shown in Fig. 1. In this 
.case, the convergence is so rapid that the 
intensity curves calculated up to the 1st and 
2nd orders almost agree, but they are fairly 
-different from that of the Oth order. 

Case II. The 333-reflection from AI at the 
Bragg position. 

We take (8) as M0 , in which we consider 
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Fig. 1. The intensity curves of 222-reflection of 
Ge at the Bragg position which are calculated 
by taking account of the perturbation up to the 
1st and 2nd orders. 
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Fig. 2. The intensity ratios of 333-reflection from 
AI between each calculation and kinematical one. 
1) Kinematical and 2-wave approximation, 2) 
Bethe's 2nd approximation , 3) Present method. 
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Fig_ 3. The intensity curves of 333-reflection from 
AI calculated by 1) 2-wave approximation, 2) 
Bethe's 2nd approximation, 3) Present method 

the waves from III to 444. The re­
sults are shown in Fig. 2 and 3. In this 
case, the convergence is very rapid, and, 
therefore, we calculate up to the 3rd order. 
In Fig. 2, the curves of intensity ratio to 
the kinematical value are shown at small 
range of J.D. In Fig. 3 the intensity curves 
are shown up to the larger range. In these two 
figures, the results obtained from the 2-wave 
and Bethe's 2nd approximations are compared 
with our results. These figures show that 
Bethe's 2nd approximation is fairly good. 

Case III. The 333-reflection from Au at 
the Bragg position. 

The convergence of amplitude is rapid 
while the convergence of eigenvalue is not so 
rapid. 

From the above results, this method is 
useful for the intensity calculation for thick 
crystals so far as v9 /bi 2 are small, and we 
can say that Bethe's 2nd approximation is 
also effective in the same case. This formul­
ation is, of course, useful in the case of the 
reflection which does not satisfy the Bragg 
condition and even in the presence of accide­
ntal interactions. 

Details will be published in J. Phys. Soc. 
Japan. 
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DISCUSSION 

L. STURKEY: It would be interesting to compare exact calculations with the values 
obtained by Fujimoto's approximation process. Therefore, I suggest that several cal­
culations be made by various people using their various systems and that comparisons 
be made with the exact result and Fujimoto's results. I will volunteer (if no one 
else does) to make the exact calculations be evaluating the complete scattering matrix. 

Remark on the Diffracting Power of Net Planes with 

Very Large Spacing 

H. NIEHRS 
Institut fiir Elektronenmikroskopie am Fritz-Haber-Institut der 

Max-Planck-Gesellschaft, Berlin·Dahlem, Deutschland 

The approximative procedures in the theo­
ries of electron diffraction may generally be 
regarded as expansions with respect to recipro­
cal powers of the interaction constant h2/2 m 
= 150e V ·A 2 • Considerations of some problems 
of recent interest, indicate that the ratio 
s,.=<P11 ·d1N (150VA2) plays an important role 
in determining the type of diffraction pattern 
to be expected from a space lattice, and in 
deciding for a suitable method of treating a 
problem. In this quantity which might be 
called "diffraction power of lattice planes h," 
d~o is the plane spacing of order h, and <P,. is 
the Fourier coefficient of inner potential re­
lated to that order. In unit cells containing 

Table 

n Soon 

1 3.60 
2 0.22 

3 0.44 

4 -0.074 

5 0.062 

6 -0. 014 

10 -0.018' 

12 -0.021 

14 0.020 

only a few atoms, which are mostly studied 
by diffraction, the spacing d,. remains alway:> 
smaller than a few angstroms, and s,. rarely 
approaches the value 1. However, in the, 
large cells of the complicated lattices charac· 
teristic of many organic compounds and 
silicates, and in crystals with superlattice 
structures, the spacing d,. can be rather large. 
Although <P,. is then known to be very small, 
it can seldom be calculated because only a 
few lattice structures with large cells have 
been thoroughly investigated. A table given 
by Ibers2

> provides scattering powers of 
atoms at very small values of 2·sin(0/2)/J.= 
1/d,. , and although tedious, the calculation of 
<P,. is possible for known structures. Some 
structures of interest in the biochemical appli­
cations of electron microscopy are fatty acid:> 
with a large number of C atoms per molecule, 
and their derivatives. For the known struc­
ture of lauric acid (Vand, Morley and 
Lomer2>, doo1 =27.4 A), as an example, values 
of Soon have been calculated. In the following 
table the values larger than 0.01 are given. 
The large value of Soo1 suggests that diffrac­
tions of several higher orders always occur 
simultaneously with (001). They must con­
tribute significantly to the diffraction pattern, 
as well as to the fringe contrast in an electron 
micrograph. The range of incident angle 




