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Fig. 12.

Pt-50 2, Co alloy crystal after ordering by annealing for 24 hours at 650°C.
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The aim of this evening lecture is to give
a general survey over a field which has now
become fairly extensive. There are many
interesting problems in the subject, and one
would wish to examine some of these in detail,
but in the space of a single lecture one cannot
possibly do more than mention the salient
points. Even here a selection is necessary,
and I hope that I may be forgiven when in
some instances [ have chosen items with
which I am particularly familiar, because they
have formed the subject of investigation by
my own research group.

Before we can assess the use of thermal

conductivity measurements for the detection
of lattice imperfections, we must first examine
those phenomena which we have to expect
when no lattice defects are present, i.e. the
scattering mechanisms and their temperature
dependence in an ideally pure sample. Here
we encounter the first difficulty, since the real
specimens are never in this ideal state, but
for most of the relevant cases the state of
ideal purity has been approached closely enough
experimentally to test the theoretical predic-
tions. The simplest way to look at the problem
is to consider our sample, which usually is a
rod-shaped specimen through which heat is
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made to flow longitudinally, as a hollow tube.
Under a thermal gradient particles or quasi-
particles are passing along this tube, and they
will collide with such obstacles as they encoun-
ter on their way. The effect of these collisions,
that is, the thermal resistance produced by
scattering, is the subject of the theoretical and
experimental investigation.

We will first discuss the case of the dielectric
crystal which is generally simpler than that
presented by a metal. Here the energy flow
is made up of phonons, and the obstacles met
by them are again phonons. The problem was
treated theoretically by Peierls in 1929, who
postulated that thermal resistance arises from
collisions in which the phonon wave vector is
not concerned and which are somewhat similar
to Bragg reflections. These so-called “Umklapp”
processes require a minimum energy of the
order of k@,/2, where @, is the Debye charac-
teristic temperature. Thus the thermal resist-
ance due to these collisions will decrease as
the temperature is lowered, and it will depend
on the nature of the lattice. A beautiful proof
of the correctness of this theory was provided
by measurements of the heat conductivity of
solid helium by Wilkinson and Wilks. Normally
it is not possible to change the Debye char-
acteristic temperature appreciably but, owing
to its high zero point energy, the compres-
sibility of solid helium is so high that external
pressure of less than 150 atm will change the
value of @, by 40%,. The results yielded heat
conductivity curves which rise steeply with
falling temperature, and this rise is shifted to
higher temperatures as the density of the solid
is increased. For a perfectly pure dielectric
crystal the heat conductivity should increase
to infinity at absolute zero, if only the phonon-
phonon interactions are considered. IHowever,
even if our hollow tube does not contain any
scattering centres, phonons will be scattered
on its walls. As was pointed out by Casimir,
we must expect a resistance which in its
mechanism is analogous to that of a Knudsen
gas. Accordingly the thermal conductivity of
the sample will fall to zero at absolute zero,
and the temperature at which this drop sets
in will be higher the smaller the specimen
diameter is. This effect has, in fact, been
found. Summarizing, we must expect the
thermal conductivity of an ideally pure dielec-
tric crystal to rise with falling temperature
and, after passing a maximum, to drop to

zero at T"-—0. These features are indeed borne
out by the experiments.

Any extra scattering produced by lattice
defects will reduce the heat conduction of
the sample and the magnitude, as well as the
temperature dependence, of this reduction
provides the basis for the analysis of the
number and nature of the defects. Since the
wavelength of the thermal phonons increases
with falling temperature, point defects are
more effective as scattering centres at higher
temperature, while close to absolute zero
extended imperfections will be more effective.
Since the early experiments by Eucken and
Kuhn in 1928, the effect of impurities has
been studied on a number of substances, and
this work has been augmented lately by the
study of irradiation effects. The latter has the
advantage that the occurring changes can be
studied step by step in the same specimen.

The theoretical analysis of scatter due to
defects 1s largely due to the work of Klemens
and that of Ziman. It shows that point defects
will cause an additional resistance which, at
low temperatures, is roughly proportional to
the temperature, but which at higher tempera-
tures becomes temperature independent. One
of the reasons for this behaviour is the fact
that at the lowest temperatures the dominant
phonon wavelengthis very large in comparison
with the size of point defects, and the scat-
tering is effectively Rayleigh scatter. This
ceases to be the case as the temperature is
raised and the scattering is becoming increas-
ingly independent of the wavelength. Extend-
ed imperfections, such as dislocations, are
relatively more effective at low temperatures
since their size may be of the same order of
magnitude as the phonon wavelength. Strictly,
one must differentiate between the effect of
the dislocation core and that of the surrounding
strain field. It is the latter which extends
far into the crystal, and which therefore is
mainly responsible for the scatter of phonons.
The theory agrees reasonably well with the
experimental results, and it suggests e. g. that
in the neutron irradiation experiments on
quartz, carried out by Berman and his co-
workers”, not only point defects but also
extended defects have been produced. As we
shall see later, similar conclusions could be
drawn from observations on superconductors.

Turning now to the work on metals, we
have to consider energy transport, not only
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by phonons but also by electrons. This makes
the problem more complicated but, at least
in the case of pure metals, there is a simplifica-
tion due to the fact that the free electrons
scatter phonons very strongly. This means
that, in the first approximation, we can neglect
the heat transport by phonons altogether, so
that we need only examine the scatter encoun-
tered by electrons. Since electron-electron
interactions are irrelevant, the only important
contribution arises from the scatter of electrons
on phonons. At low temperatures this leads
to a thermal resistance of the form a7? which
indicates that for the ideally pure metal crystal
the heat conductivity should become infinite
at 7=0. Similar to the behaviour of dielectric
crystals we must, at sufficiently low tempera-
tures, expect scattering at the specimen
boundaries, but this is a case which never
arises in practice. Actually, even in the purest
metallic samples, the electron mean free path
is always limited by collisions with impurities
which introduce a thermal resistance of the
form B/ T, resulting at the lowest temperatures
in a heat conduction which rises from zero at
T=0 linearly with temperature. We thus
arrive for the thermal conductivity, K, of a
pure metal at a curve which from absolute
zero, rises at first linearly, passes through a
maximum and then falls off again to higher
temperatures, according to: W=1/K=aT*+
BT, where « is connected with ©p and § is
a measure of the impurity content. The
experimental evidence® shows that this simple
assessment is quite satisfactory. It can easily

be tested by plotting W7 against T°.
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Fig. 1. (a) Thermal conductivity, and (b) WT/T3
lines for two lithium specimens of different
purity (after Rosenberg).

Owing to the short de Broglie wavelength
of the electrons, B is essentially due to col-

lisions with point imperfections and extended
lattice defects are only effective in so far as
they constitute series of point imperfections.
While thus the thermal conductivity of a pure
metal is a very sensitive detector of point
defects, it can give little indication when these
defects are arranged in a significant pattern.
Moreover, since B is connected through the
Wiedemann-Franz law with the residual electri-
cal resistance, R,, and the Lorenz number,
L, as f=Ro/L, most of the information which
can be gathered from thermal conductivity
experiments can be obtained from measure-
ments of the electrical resistance which are
far less laborious. The situation is changed
when we deal with an impure metal in which
the electronic heat conduction is so much
reduced by scatter on point defects that thermal
conductivity by phonons becomes noticeable.
For this much the same considerations are
then applicable as have already been discussed
in the case of the dielectric crystal. Experi-
ments on a number of alloys have in this way
led to the determination of dislocation densities
in these specimens.

The thermal conductivity of metals which
become superconductive is of special interest in
the detection of lattice faults. The first deter-

Fig. 2. Thermal conductivity of a metal (- --) in
the superconductive, and (——) in the normal
state. The electrical resistance disappears at
i
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mination was made in 1912 by Kammerlingh
Onnes, but the result appeared to him at
the time so unlikely that it was not published
until several years later. It appears that at
the same temperature, 7', at which the electri-
cal resistance vanishes suddenly, the thermal
conductivity begins to drop below the value
for that in the normal state. A comparison
between the two values is quite easy since
the normal state can always be restored by
the application of a relatively small magnetic
field which has no appreciable effect on other
properties of the metal. We must thus
distinguish, at any temperature below 7%,
between the two values of the thermal
conductivity; K, in the superconductive and
K, in the normal state. For pure metals,
K, is generally smaller than K, which, while
surprising at first sight, is exactly what should
be expected. Since superconductivity indicates
a cessation of energy exchange between
electrons and the crystal lattice, the electrons
thus affected cannot contribute any more to
the process of thermal conduction. As the
fraction of conduction electrons passing into

T/T¢

Fig. 3. The semi-empirical function for Ki/Kn
plotted against the reduced temperature 7/T.,
and the experimental data for tantalum and
niobium single crystals.

this state of lower energy increases gradually
as the temperature is lowered below 7., the
ratio of K,/K, which is 1 at 7. becomes
accordingly smaller. Since the rate at which
electrons pass into the lower state with falling
temperature can be estimated from experi-
mental data, a semi-empirical relation between
K;/K, and temperature can be deduced which
is not strongly dependent on the theoretical
model employed. This curve, which is usually
plotted against the reduced temperature 7"/7%,
provides a measure of the reduction of elec-
tronic heat conduction when the metal becomes
superconductive.

For certain crystals, as, for instance, tanta-
lum and niobium, the semi-empirical function
seems to provide a good description of the
experimental results as long as temperatures
T/T.>0.5 are considered. However, below
this temperature deviations occur which are
very striking, and which even lead to values
of KiK. in excess of 1. The reason for the
failure of the theory is that it only takes into
account electron conduction. However, as the
conduction electrons gradually disappear from
the thermal distribution, they not only cease
to transport heat, but they also cease to act
as scattering centres for the phonons. Con-
sequently, we must expect, particularly in a
pure single crystal, a large phonon conduc-
tivity to make its appearance.

In order to test this hypothesis, experiments
were carried out in which lattice defects of
different nature were introduced into the
specimens, and their effect on both K, and
K. was recorded. It could be shown very
clearly that strain, which causes dislocations,
will reduce the observed maxima in K., whereas
K, will remain largely unaffected at the lowest
temperatures by the introduction of impurities.
Conversely, K, is much reduced by the addition
of impurities, but is highly insensitive to strain.
These tests not only showed that the heat
conductivity maxima in the superconductive
state are due to phonon conduction, but they
also pointed to a field of practical application.
Since K. is largely sensitive to dislocations
and other large scale imperfections, whereas
K, records selectively the point defects,

measurements on the same specimen in both
the superconductive and the normal state will
allow separate assessment of each. The
method requires the use of low temperatures,
but it has the great advantage that the two
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Fig. 4. Diagram showing the effects of impurity and strain on the thermal conductivities in the

normal and superconductive state.

types of defect can be determined independently
without change in the physical state of the
specimen.

Experiments have been made on samples of
several metals, investigating the production
of dislocations by stretching and bending as
well as the effects of subsequent annealing.
‘Comparison with theory has yielded in some
of the cases a surprising degree of agreement
and, in view of these encouraging results, the
method has, in the last few years, been applied
to the assessment of the effects of neutron
irradiation. This type of damage is not as
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Fig. 5. Thermal conductivity of a niobium
single crystal in the normal and superconduc-
tive states before (——) and after (- --) neutron
irradiation.

yet fully understood and, owing to the exten-
sive damage caused by each neutron, difficult
to assess. It is clear that a method which is
capable of differentiating between small and
large-scale lattice disturbances is particularly
useful in helping to elucidate the processes
involved.

In one experiment?®, the thermal conductivi-
ties K; and K, of a niobium single crystal
were measured first in the undamaged state,
and then again after the specimen had been
subjected to neutron irradiation in a research
reactor at operating temperature. Both K,
and K, were found to be reduced, indicating
the creation of point imperfections as well as
of extended defects. Under the conditions of
the experiment it could be assumed that,
while the interstitials could migrate easily,
the vacancies remained in place. The results
could therefore be interpreted as follows: The
vacancies, being point imperfections, are
responsible for the reduction in K, while the
interstitials migrate to form small dislocation
loops or jogs on existing dislocation lines. A
plausible estimate led to an increase of the
order of 10° dislocations per cm?® to be expected
as the result of irradiation, while an analysis
of the reduction in K, yielded 3x<10° lines
per cm? This agreement is a bit too satis-
factory to be accepted without reserve, and
more work on these lines must show whether
or not it was fortuitous. However, the method
seems to show good prospects for the assess-
ment and interpretation of complex lattice
defects.
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