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Lifshitz or MorLtroll et al. Anelastic potential coefficients would be used to estimate

the changes in effective modulus. The dynamic problem would then be equivalent to

wave propagation in a non-uniform medium.
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In this paper a perturbation method for evaluating the effect of defects on additive
functions of the normal mode frequencies of a lattice is presented' The method is
applied to the study of the effect of defects on the time correlation functions associated

with the vibrational modes of a lattice.

Recent work on the theory of linear response
of systems under external stimuli has revealed
the connection between the correlations among
the various dynamical properties of a system
ancl its susceptibility to external stimulil).

The present paper is concerned with the
study, by'a perturbation theory method, of
the dynamical correlations between the vibra-
tional modes of a crystal lattice in which
there are defects.

We will restrict ourselves to the classical
mechanical approach to the problem. A cal-
culation of such correlation functions in a

perfect lattice has been done by Montroll and
Mazurz). It can be shown that these correlation
functions are additive functions of the normal
mode frequencies. For instance, in a mon-
atomic lattice of N atoms, the autocorrelation
functions between the displacements and
between the momenta of the s-th atom in the
lattice are:

functions of the normal mode frequencies has

been studied in detail in recent years.s) '1)'s)

Here we will propose a method by which an
additive function can be directly expanded in
a perturbation series.

Let F be an additive function of the normal
mode frequencies:

(u"(t)u"(o)):q**2,i,^;U,
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where r stands for the square of the frequency
and G(x) is its distribution function. The
limits of the integral have been chosen

without loss of generality, remembering that
G(r) is nonvanishing only in a finite interval.

In terms ol a(y) defined by the equation

1 f-
A(x): r;\__"@e-inady. (4)

Eq.(3) can be written in the form

p: ) l- orvldy\* G(x)e i'vd,x,
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where the operator U(Y) is given bY

(3)

U(y)-s-;uu, (6)

M being the dynamical matrix of the lattice
whose eigenvalues are the squares of the

normal mode frequencies.
In the presence of defects in the lattice,

the dynamical matrix can be written in the

r:\* 
*c<oa*>a',

(1)

(2)
lLn

Here m is the mass of the atom, u"(t) and
D"(t) are the displacement and the momentum
of the s-th atom, ar,d a* is the z-th normal
mode frequency. ( ) stands for the canonical
average at the absolute temperature 7.

The effect of defects on such additive
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form
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$ e-w"R(z)dz,M:Mo*)D, (8)

where i is a suitable parameter, Mo is the where the resolvent operator R(z) is

dynamical matrix of the perfect lattice, and R(z):(z-fu!)-t (9)
D is the perturbation matrix. The operator and the contour encloses the real axis on
U(y) can be written in the form of a contour which the eigenvalues of M occur. The
integral resolvent operator can be expanded in a series.

R(z):(z-Mo)-tl )(z- Mo)-LD(z-Mo)-Ll )z(z- Mo)-tD(z- Mr)-t2t(z- Mo)-t-t, . . . . (10)

When this is substituted in Eq. (8) and the trace taken in the representation in which Mo is
diagonal, we get

Trace U(y):Z e-durnn+xon,t a 1z(-i.y) 4Ab*#2+O(r8). (11)

Substituting this in Eq. (5) and using Eq.(4) we obtain the required perturbation series for F:

F : I A(x * + ) D*^) + p 
+a +!tr a-4ulu) 

+ o rn. (12),

The explicit form of the perturbation matrix for various types of point defects in a simple
cubic lattice model has been studied elsewhere.s) ,4).s) We give below the formof the matrix
elements D*, for two types of point defects in a linear chain.
( i ) Isotope defect of mass m, at the /-th lattice site:

1 -1 
rn'

4-L--'

D^r:4 eznil@-tu)lN .
.{v

(ii) Change of spring constant from 7 to yt at the /-th gap:

):A-1,
r
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(13)

(14)

(15)

Using these equations and Eqs. (12), (1) and (2) one can immediately obtain a perturbation
expansion for the autocorrelation functions. The momentum autocorrelation function in the
isotope case, for example, becomes

operator formalism which is capable of
handling the anharmoic problem. This point
will be discussed in a later paper.

Montroll and Mazur2) show that in a coupled
harmonic oscillator assembly the autocorrela-
tion function decays asymptotically in time. One
must expect that in a lattice with defects of the
type we have considered the correlation
function must decay. However, the manner
of decay in a perfect lattice and that in a
lattice with defects wilt be substantially
different in the time range corresponding to

(p"(t)p,(o)>:Tl+.o",,(r+f )"',-#r*Fmsin<.,,/*o(i,)],
Similar expressions can be obtained in other
cases.

The above method is applicable when the
effect of the defect on the dynamical matrix
can be taken into account by a perturbation
matrix, i.e., when the lattice even in the
presence of defects still behaves like an
assembly of coupled harmonic oscillators,
though without the symmetry of the perfect
lattice. Anharmonic effects are outside the
purview of this formalism. However, a simiiar
method can be developed using the Liouville
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(t'zl) being small. This time range can obvi-
ously be appreciable when I itself is small.
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DISCUSSION

Dexter, D. L.: Would you please discuss the application of this formulation to the
calculation of observable quantities ?

Mahanty, J.: The summation of the series that occurs as the coemcient of (i'll) is

rather difficult for realistic lattice models. This makes it difficult to calculate observable
quantities. For the linear chain with nearest neighbour interactions the series can be

summed in closed form.
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Koshino's mechanism for inelastic scattering of electrons by impurities in metals is
modified, so that the perturbation Hamiltonian depends on the strain at an impurity,
not on the displacement. Expressions are derived for the resulting electrical resistance
and the corresponding additional phonon scattering. The effect of the local modification
of the strain field of a phonon at the impurity is discussed.

S. Koshinol) suggested that electrons are
scattered inelastically by impurity ions, because
of their thermal motion. This should lead to
an additional electrical resistance and to
substantial deviations from Matthiessen's rule.
This suggestion is further explored.

While Koshino took the displacement of the
impurity ion as a measure of the perturbation
Hamiltonian, the displacement of the impurity
ion relative to its neighbors seems a better
measure of the distortion of the impurity field.
Thus the perturbation Hamiltonian is taken as

";:\*(#
when (r) is the impurity potential, p the
difference in wave-vector of the two electron
states, e the polarization and q the wave-
vector of a lattice wave, the displacement of

which at the impurity is ezz, and o the distance'
between the impurity and the nearest neighbor.
The integration is broken into a number of
cones, each with its appropriate direction of
cL. This expression may be compared directly
to that for elastic scattering by V(r) according
to the Born approximation, and yields

6 pt: Aez po (2)
where Dpi is the increase in the temperature-
dependent part of the resistivitY, Po the residual
resistivity, e2 the mean square thermal strain,
arrd A a numerical constant which, on the
present model, is about 10 to 20. Thus dpr

c>:Ta at low temperatures, and varies as 7 at
high temperatures.

Since e2 is always small, dp; is always small
compared to po, but is not small compared to'
ideal resistivity p;, particularly at low tempera-

. e)eb''u(q)(eiq''-r) ( 1 )


