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The equilibrium vacancy concentration in crystals, subject to hydrostatic pressures,

or internal stress systems, or both, is calculated. The dependence of vacancy
concentration on stresses is due to four major effects: (i) Work done by or against

the externally applied hydrostatic pressure, as the volume of a crystal increases when
an atom is removed from its interior to form a vacancy, and is redeposited on the

crystal surface. (ii) The change in elastic energy of a stressed crystal because the
vacancy with its immediate vicinity constitutes an elastically " soft " region. (iii)
Work done by or against the normal stress components of the internal stress system

as the material around the vacancy relaxes by Vn, the volume of relaxation. (iv) The
change of localized modes of lattice vibrations, reacting to the strains in the vicinity
of the vacancy. In addition, the zero point energy of the local modes is changed by
strains, and an electrical interaction exists so as to attract vacancies to regions of
compression. However, the latter two terms are negligible.

A theoretical formula is derived to take account of the named major effects, and is
applied to dislocations in otherwise stress free isotropic crystals. It is found that in
f.c.c. metals at high temperatures the frequency effect is dominant, causing vacancies

to be repelled from regions of compression. A logical consequence of this results is
that edge and mixed dislocations cannot climb readily, even though attracting vacancies.

Some rather puzzling previous experimental observations may be explained on the

basis of this result.

Derivation of the Basic Formula

Previously, the following equation has been

derivedr) for fo, the equilibrium vacancy
concentration in a stress free crystal:
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When subtracting Eq. (1) from Eq. (2), the
vacancy enhancement factor, f(r)lfo, due to
the application of a stress is found as
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where U'(0)- U(0) is the difference in potential
energy between a crystal containing one

vacancy, and a reference crystal, alike in all
respects except that it does not contain a

vacancy. The symbols u/r(0) and u;(0) denote
the frequencies of the /th normal mode, in
the crystal containing the vacancy and in the
reference crystal respectively. The symbols
h, k arrd 7 have their usual meaning, namely
Planck's constant, Boltzmann's constant and
the absolute temperature. By inference, the
equilibrium vacancy concentratiort, f(r), in a

crystal subject to stresses rrr is given by
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Here r'U(r) is the potential energy difference
between ar.'i.nternally stressed crystal contain-
ing a vacancy and its similarly stressed
vacancy free reference crystal, while r'U(o)
is the corresponding quantity for the unstressed
state. No effect of externally applied forces
appears in the expression for r'U(r) for the
reason that the extra elastic energy stored in
an imperfect externally stressed crystal is

completely compensated for by extra work
done on the crystal by the surface forces.
However, the crystal changes its volume by
AV:a-Vn, the difference between one atomic
volume, u, and the volume of relaxation of a
vacancy, 7r, when one atom is removed from
its interior and is redeposited on its surface.
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In the presence of an externally applied
hydrostatic pressure, p, work is thereby done
against this pressure, and this is the origin
of the term pr'V in Eq. (3). The other terms
.ar e / v 1(r) : v 

t t(r) - v 1(c) and y' v 1(Q) : y/ r(0) - y 
r (0).

The expression /U(I)-/U(O) consists of
two major parts (i) Emt, the difference in stored
.elastic energy between a stressed crystal con-
taining a vacancy and its similarly stressed
vacancy free reference crystal, which is due
to the fact that a vacancy causes an elastically
" soft " region in the crystal and therefore is
'drawn towards regions of high stress, regardless
of sign, and (ii) the pressure work, ll3 cVa,
with z the sum of the normal stress components
of the internal stress system at the position
.of the vacancy, expended as the material
relaxes Vn on removing an atom. It is to
be remembered that I/n is a negative quantity,
i.e. the pressure work term is a linear function
,of strains and causes vacancies to migrate
.away from regions of dilatation and into
regions of compression.

In an earlier investigation, Eshelby,) has
.derived Er,t, for the case of an ellipsoidal
inclusion with modulus of rigidity, pt, and
,compressibility tct instead of p and /E as in
the rest of the material. It is, for a spherical
inclusion of volume O,

u,",:+L+,,* **,0,*,0,f (4)

Here A-(o, - r) I lQc - r,) a - rf with d:
(1-lo)/3(1-o), o being Poission's ratio, and B:
@' - ol[@- p') P- A with p :214-5o)/15(1-a)'
Further, c is the sum of normal stress
.components of the internal stress system,
as before, while xctt:rtt-ll3tdtt is the
deviatoric part of the internal stress compo-
nents, with drl Kronecker delta.

In order to apply this formula to vacancies,
it is necessary to assign specific values to O,
the volume surrounding a vacancy within
which the elastic constants are significantly
altered, to r'lr ar,d to ptlp. This is possible
without undue ambiguity when using a result
by Dienesst that an atomic fraction c of
vacancies causes an equal fractional change
of Young's modulus, E, i.e. that E, lE:l-c.
Since c may be expressed as c:olg, u being
one atomic volume, this means that pt lp and
rtf r are always close to unity, whether J? is
thought to encompass only the first-neighbor

shell around the vacancy, or many. If,
further, a is constant, one has p, lp-rr1s-g
and with g close to unity, A=B:l-g for
all values of o. Since c:alQ, arld g:prlp-
1-c according to Dienesst one thus fiids QAo
QB-u. From thereon the application of Eq.
(4) is straightforward.

The pressure work term, ll3tV4 is simple
to evaluate since, on considering the motion
of the atoms in the immediate vicinity of a
vacancy, it becomes apparent that the effective
value of tr/.e is never far from al2, i.e. never
far from one half of an atomic volume.

The part hlZlllvt(r)-r'ur(0)l of Eq. (3)

reflects the change of zero point energy of
the vibrational modes of the crystal. It can
be shown that this is negligible.

In the remaining part of Eq. (3), the
" frequency term " ) t t" v, (r) I vl(t) - ln
p'r(0)/vz(0)l:C appears to be the most inter-
esting. It is almost exclusively governed by
changes in localized modes of vibrations at the
vacancy when stresses are applied. One finds
that this effect causes vacancies to be repelled
from regions of compression, attracted to
regions of dilatation, and that it is linear in
the strains. It thus opposes the pressure
work term,

The theoretical treatnrent of C is somewhat
involved and rests on the application of
Gruneisen's relationship for the relative change
of vibrational frequencies, 6ulyo, due to relative
changes of volume, 6VlVo, namely 6vlvs-

-ydVlVo, where T-2 is the Gruneisen con-
stant. The final result obtained is

c:rz.,ll\,a;-"]+f1(1-r,)e. ( 5 )
O ruetal

Besides the symbols defined above, including
Vo, the volume of the crystal in the unstressed
state, this equation contains Z, the number of
nearest neighbor atoms to the vacancy, e, the
sum of the normal strains due to internal and
external stresses, and rr:rl!rc-(r-rl)a] with
a:(l*o)13(l-o), as introduced before. Also,
as we saw already, g:|-c:l-er/g which is
ahvays close to unity. Moreover, h-z-p for
g near unity and thus 3!?(1-rr)lu:-3. If
this is correct, C becomes the dominant of
all contributions to lt(f(r)lfo) in internally
stressed crystals at high temperatures.

In addition to the contributions discussed
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already, /U(r) contains an electric interaction
energy. This is due to the fact that vacancies
carry a net negative charge, and regions of
dilatation and of compression carry a net
negative and a positive charge respectively.
Cottrell, Hunter and Nabarro{) have previously
investigated this effect for the case of noble
metals. They concluded that the resulting
interaction energies are insignificant.

In summary, then, the ratio of the equili-
brium vacancy concentration in internally
stressecl crystals subject to an external
hydrostatic pressure, divided by that in stress
free crystals is given bY

^ * = - *, {o 
t v - ;l# - :'' ;7,f
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provided the various parameters are evaluated
as discussed.

Application of the Formula to Dislocations

One of the most suitable problems for the
application of the above theory is the
distribution of vacancies at dislocations. This
is one case in which stresses and strains
reach values sufficiently high to cause

significant deviations of f(r)lfo from unity.
No particular difficulties are encountered

when calculating the equilibrium vacancy
distribution in the elastic stress field of
dislocations. It is found that outside of a

distance of about 204 from a dislocation axis
in typical metals the value of. f(r)lf o is close

to unity.
Much more interesting is the behavior of

f(r)lf, at closer distance from dislocation
axes, but the treatment of this region is

complicated by the fact that linear elasticity
theory breaks down in it. The radius of the

region in which linear elasticity theory is not
obeyed, i.e. the radius of the dislocation cores,

is defined o.s ro:Aolr*rt. It is Ao:As: pbl2tr

for screw dislocations, and An: A: pbl2r(l-o)
for edge dislocations, where o is Poisson's
ratio, and c",rt:plg is the theoretical shear
strength of the crystal. The parameter g

assumes its highest value of g=30 for close
packed metals and is lower for all other types
of crystals.

Utilizing the known value of the energy of
dislocation cores, being about 1 eV per atomic

plane, allows to define and estimate the mag-
nitude of what may be called the " equivalent
core stress". This is found to be about
2r"at in average, and between 3tc,rt and
ircrtt zs a maxirnum value. The average
strain in a dislocation core, on the other hand,
is composed of two parts: (i) An overall
dilatation due to non-linearity, amounting to
about one atomic volume per atomic plane.
(ii) The strain of about (b12)l2ro, arising
because the dislocation core of total width 2ro

may be regarded as the boundary between
an unslippecl region and a region slipped by
D; of which blZ is the deformation of the
plane above the slip plane, and blZ that of
the plane below it. It is estimated that the
maximum strain is not far from twice the
average strain in the core.

With the above values it is shown that, in
typical metals, the interaction energy, Ent,
is small under all circumstances, contrary to
the findings of Bullough and Newmans). The
pressure work term is not negligible and may
reach U3 eV at the center of an edge dis-
location in a typical f.c.c. metal. Finally the
frequency term, C, always opposes the pres-

sure work term, and, at intermediate temper-
atures, is of comparable magnitude.

Discussion

From the preceding calculations it appears
that the interaction energy due to the
relaxation around a vacancy, as well as the
equivalent binding energy due to the frequency
effect are both much larger than all other
contributions to the binding energy between
vacancies and dislocations. These two terms
are linearly related to compressional and
dilatational stresses, respectively strains, but
have opposite sign. Moreover, the pressure

work term gives rise to a binding energy,
resulting in an enhancement of vacancy
concentration in the compressed parts of the
core which decreases with increasing tem-
perature. The frequency effect, by contrast,
lowers the vacancy concentration in the
compressed regions, and increases it in the
dilated regions, such that vacancy enhance-
ment factor is constant, independent of the
temperature. Thus, the overall vacancy
enhancement factor due to both processes

combined goes through a minimum at some
intermediate temperature. Below this tem-
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perature range, the vacancies are attracted
to the regions of compression, above it they
are increasingly repelled from the regions of
compression and are instead attracted to
regions of dilatation.

As a result, dislocations are expected to
lose almost all of their vacancy atmospheres
at intermediate temperatures. At both, high
and low temperatures, the net increase in
relative vacancy concentration in the cores
of edge dislocations becomes significant.
However, edge dislocations are not expected
to climb readily at high temperatures, in
spite of their vacancy atmosphere, because,

in order for climb to occur, vacancies must
enter the compressed region of the core. On

the other hand, conditions might well be

favorable for pipe diffusion along the dilated
part of the core. The discussed characteristics
diminish as the angle between the Burgers
vector and the dislocation axis decreases and,

consequently, the normal stress components
diminish.

If the above results are accepted, several
hitherto rather puzzling observations are
thereby explained. These have previously
been discussed in considerable detail6) and

point to the fact that edge dislocations are
not ready sources and sinks for vacancies,
particularly not at high temperatures.

A detailed account of this research is to be
published elsewhere.
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DISCUSSION

Krumhansl, J. K.: Would you comment briefly on the type of dilatation field which
you assumed in computing the contribution of localized modes ?

Girifalco, L. A.: We used a general strain matrix. The localized modes were taken
as vectors directed towards the center of the vacancy. The strain dyadic was then
dotted into the frequency vectors to appropriately change its length and orientation.

Seeger, A.: Using Gri.ineisen's constant in estimating the changes in the vibrational
free energy is equivalent to using quadratic elasticity theory. Should not also all the
other second-order contributions be included in the calculatior,, e.g. the quadratic
contribution to the stress-field of the dislocation ?

Girifalco, L. A.: It would certainly be more rigorous to use second orderelasticity
theory. However, using Gr[ineisen's constant is analogous to using linear elasticity
with temperature dependent elastic constants. The frequency effect becomes comparable
to the linear elastic effects only when the strains are high near the vacancy and low far
from the vacancy. This is not the result of the order of the approximation, but
merely of the functional form of the strain field.

Sines, G.: In many phenomena in which the interaction energy appears, such as

diffusion and some dislocation-point defect interactions, the energy appears as a
multiple of" llkT. I suggest that it would be useful to also express the interaction in
this manner.

Girifalco, L. A.: We were interested in binding energies and therefore expressed

our results in these terms.


