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The form and magnitude of the size effect interaction and the second order in-
homogeneity effect interaction between a point defect and an edge dislocation are
discussed. It is shown that, by taking both these interactions simultaneously into
account, the binding energy between a relatively hard impurity atom and a dislocation
can be estimated without introducing the usual arbitrary cut off near the dislocation
core. Furthermore, such impurities should form a displaced Maxwellian atmosphere
with a bounded maximum concentration beneath the edge dislocation.

The second order inhomogeneity interaction is used to calculate the kinetics of
vacancy annealing. The predicted kinetics differ from the previous published theoretical
results.

The elastic interaction between a point
defect and a line dislocation can be separated
into two distinct contributions: a) an interac-
tion E, arising from the difference in size
between solute and solvent atoms, b) a second
order interaction E, which appears if the
solute atoms behave like a small region
with different elastic constants from those
of the matrix crystall).

By replacing the solute atom of radius
zo(l*d) by an elastic sphere of the same
size and inserting this into a spherical cavity
of radius rs, Eshelby2) shows that for an

fE,:-dl bu du (1)
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where y'ri is the stress field of the dislocation
and the integral is evaluated over the spher-
ical volume V:4l3.trri. For an edge disloca-
tion in an isotropic elastic medium, f;a is a
potential function and therefore we have
the exact resultr):

Et:-6Vp,ii(R,{) (2)
where (R,<!) are the cylindrical polar coordi-
nates of the center of the spherical inclusion
with the dislocation lying along the z axis.
In a previous analysis Bilbyt) gives the errone-
ous impression that (2) is an approximate
result validonly to 0(rslR)'z. Thus we obtain
the well-known result, in the usual notation

and the surrounding matrix has been con-
sidered by Eshelby'). The solute atom is
replaced by an equiualent elastic inclusion
and a general expression for this second
order interaction energy is developed. In
particular it may be shown that near an
edge dislocation situated as above
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infinitely hard spherical atom and
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for a spherical void (vacancy)n).
Eq. (a) shows a net repulsion from the

edge dislocation which is greatest perpen-
dicular to the slip plane (Q:l-rl2), whereas
Eq.(5) shows a net attraction which is greatest
on the slip plane (,/r:0),

The total elastic interaction energy Ey
between an edge dislocation and a hard solute
atom is thus given by the sum of Er and
E, given by Eq. (4). Thus Ez has a bounded
maximum negative value of

Er,atx):-3.4pV6'z (6 )
at the position(l-lu\ubVAsindl, l. ' .,r - , - ---- .,) / o \- ill-v') R r:0.3b1r6, t/': -rl2 (7't

The interaction Ez arising from a difference with Poisson's ratio equal to U3. Con-
in elastic constants between the solute atom sequently the formation of a displaced
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Maxwellian atmosphere is possible in this
case without account being taken of the de-

tailed dislocation core configuration; that is no

arbitrary cut-off of the elastic interaction
energy E1 is necessary. Such a displaced
atmosphere in low carbon and nitrogen steels
could conceivably become ordered near the
dislocation and lead to the formation of a

local martensitic phase; precipitates with a

martensitic structure associated with disloca-
tions in a-iron have been identified by reflec-
tion electron diffraction by Doremus and
Kochu) and similar ribbon-like precipitates
stightly displaced from the dislocation lines
have been observed by transmission electron
microscopy by Fisheru).

The interaction energy between a lattice
vacancy and an edge dislocation primarily
consists of E,2, given by Eq' (5). It is
interesting to note that the binding energy
on the plane adjacent to the slip plane is
approximately twice Friedel's estimate?)
which neglected the shear field of the dis-
locationo). The fact that the binding energy
is a maximum on the slip plane, with the
consequent enhanced vacancy concentration
there, may be important in the process of
cleavage fracture when the cleavage plane
coincides with the primary slip plane (zinc,
silicon, for example).

When vacancies are in supersaturated solu-
tion in a crystal they will be attracted to
the dislocations which can act as sinks for
their annihilation. Due to the short range
nature of the interaction the concentration
gradients away from the dislocations will
be everywhere small which allows diffusion
flow to be neglected, in contrast to the
analogous pure drift flow analysis of Cottrell

and Bilby')'0) for the size effect interaction
where persistent infinite concentration gra-

dients are produced. The kinetics of this
annealing process have been calculated by
Friedel assuming a purely radial interaction
potential. We have extended this to take
account of the angular term in Eq. (5).

It can be shown that, starting from an

initially uniform concentration Co, the number
of vacancies N(/) that arrive at unit length
of an isolated edge dislocation in time / is
given by

(8)

where D is the diffusion coemcient, ? is the
absolute temperature, ft is Boltzmann's con-

stant, A:15pb' VlLft'(l-v)(7 -Sv) and v:U3.
The time dependence is thus the same as

obtained by Friedel') but M/) isapproximately
double his value.
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DISCUSSION

Koehler, J. S.: Can you tell us the relative magnitudes of the interaction E, and

E, for a vacancy at about ten atomic distances from the dislocation?
Bullough, R.: In the calculation of the vacancy annealing kinetics we have ignored

any size-effect contribution to the interaction energy. That is, we have neglected

the strain field of the isolated vacancy and treat it as a simple soft spot in the crystal.
However, if the radial strain associated with the vacancy is Dd;e, then at 10b from
the dislocation, Er:-10-Lpvd and Er--L}-'pVd. Thus ErlEr(at r:100):1000. They

are therefore comparable for a l% sttait. The ratio Erl Ez, however, decreases

rapidly with distance from the core.
Otte, H. M.: Could you explain what you mean by a martensitic structure? Do

you have in mind a structure formed martensitically? If this is so, then, since you
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are discussing Fe already in the body centered cubic form, do you suggest that
regions of tetragonal martensite form or that an Fe carbide torms? If this forma-
tion is indeed martensitic, can you predict a macroscopic shear for the reaction?

Bullough, R.: when I used the term martensitic structure, I was not implying
anything about its mode of formation. I simply meant that precipitates near an
edge dislocation with a body centred tetragonal martensite structure should suffer a
localized repulsion from the edge dislocation.

Kuhlmann'Wilsdorf, D.: While your calculation on the attraction of vacancies to
edge dislocations due to their interaction with shear stresses coincides with our
own (lecture I F 12)* everywhere outside of the dislocation cores, it cannot be applied
inside of them. (For typical close-packed metals the critical distance is r<6b). The
reason for this is that the shear stress on the slip plane cannot possibly rise beyond
the critical shear stress of an ideal crystal, which value is reached at the rim of
the core. On the other hand, normal stresses, absent on the slip plane of an edge
'dislocation outside of its core, are very strong and deflnitely dominant inside of the
core. Even though the linear distances of relaxation of the first neighbor shell to
a vacancy was calculated to only a few percent of normal distances by Girifalco,
this does not mean that the vacancy relaxation volume is small. In fact, since the
first shell in close packed metals includes a total volume of about 13rr, with z the
atomic volume, the calculated linear distances of relaxation correspond to a volume
'of relaxation of * 2u13. For the purposes of the present calculation, the outward
relaxation volume of the second shell must be subtracted from this figure, the inward
relaxation of the third shell be added, and so on. According to present best evidence
available, this sum converges very rapidly to a value of about 0.5a. Therefore, the
volume effect is far from negligible, but instead is several times larger than the
interaction between vacancies and shear stresses. For this reason, in metals the
vacancies will not aggregate along the slip plane in the core of edge dislocation.
Incidentally, the formula given for Eat can be greatly simplified, as is explained in
our own paper (lecture I F 12)x and, more completely, in a detailed publication to
appear within the next several months.
* Proc. Int. Conf. CrAst. Latt. Def. (1962)t J. Phys. Soc. Japan la Suppl. II (1963) 230.

Bullough, R.: In our treatment of the vacancy interaction we have replaced the
vacancy by a spherical void in an elastic continum and have assumed that the
dominant interaction with a dislocation is the inhomogeneity interaction. Clearly,
if there is a large radial strain associated with a vacancy in the face-centred cubic
metals then the first order elastic interaction should also be taken into account (see
reply to Professor Koehler). However, the observations of t'/' vacancy annealing
kinetics in such metals can be interpreted (as we show in our paper) by assuming
a dominant inhomogeneity interaction and do not follow if a large size effect con-
tribution is allowed for. In your treatment of the problem (paper I F 12)*, you also
introduce a further second order interaction arising from the interaction of the
Yacancy strain with the local vibrational modes of the crystal. I am surprised that
with your adoption of a large vacancy relaxation that this second order contribution
is comparable to the first order size effect interaction and is sufficient to inhibit
climb processes at high temperatures. Also I feel that the use of a core radius of
6D is questionable. The half width of the Peierls edge dislocation is 0.750 and I
would think, therefore, that our cut off radius of. r:b was not unreasonable.
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