
Nucleation of Stacking Fault Tetrahedra in Gold

+(i10) quench loops in aluminum lie overwhelmingly on {111}, while {110} loops are

rare, even though they are energetically much more favorable. Also the loops

identified by Westmacott, Barnes and Smallman (lecture II A 8)* are definitely non-
equilibrium forms. When the vacancy supersaturation has dropped to the extent
that climb becomes slow, the frictional force on the original loops, the geometry

of which was governed by dimb behavior ("vacancy precipitation", Berkeley Con-

ference, 1961), drops and they then begin to assume equilibrium forms; by glide, by dis-

sociation, and/or by conservative climb. This I am convinced, occurs in quenched gold,

namely fast growth of dislocation loops which then transform into tetrahedra. (ii) Con-

tinuous tetrahedra growth and dissolution presumably involve the same stages only in
reversed order. The high temperature required for the annealing out of tetrahedra
compared to that for prismatic loops, indicates the existence of a high energy barrier.
Such a barrier must inhibit tetrahedra growth at all temperatures much below that
of tetrahedra annihilation.
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The stability of quenched Frank sessile loops with respect to perfect prismatic loops

is studied on a new model. It is concluded that measurement of the size of stacking

fault rings does not give the right value for the stacking fault energy. The occur-

rence of stacking fault defects is predicted for metals with relatively high stacking

fault energy like aluminum. Experiments to check the theory are proposed.
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1. Introduction
Observations of thin films of quenched

face-centered cubic metals have revealed
several large defects'): perfect prismatic dis-
location loops, Frank sessile loops surround-
ing a stacking fault, tetrahedra' Helical
dislocations have been observed in alloys').

Although the existence, the geometrical
features and some mechanisms by which
they can transform into each other have been
predicted or explained quite accuratelyt)'t)-t),
very little is known of the reasons for which
a given defect is observed rather than another
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oTi"."for", 
it is the purpose of this paper

to study theoretically the stability of a
Frank sessible loop with respect to a perfect
prismatic loop by assuming they can trans-
form into each other by a glide mechanism'''u'.

The next paragraph of this paper will be
devoted to the description of our model and
of its general consequences. In the third
paragraph we shall apply the results of our
calculation to the description of the experi-
mental situation in face'centered metals.
We shall show that previous determinations
of the stacking fault energies in the metals
based upon the determination of the size of
quenched loops are not reliables). We shall
compare our results to those obtained by
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Czjzek, Seeger and Mader'o) in a similar
work on the transformation of Frank sessile
loops into tetrahedra and make some remarks
on the processes of formation of quenched in
dislocation loops.

2. Model

Let us consider a Frank sessile loop (F),

with Burgers vector il.:!<ttt>, Iying in
the (111) plane (Q) (Fig. 1). Kuhlmann-
WilsdorfT) has suggested that a Shockley
partial (S) with Burgers u..tot-R:* <tlz>,-6
able to glide in the plane (P), can be nu-
cleated inside the loop, develop under the
effect of the stacking fault energy, sweep
the stacking fault, and recombine with the
Frank sessile dislocation giving a perfect pris-
matic dislocation (P) through the reaction

i]+ri:i
which can be written

*<lt>+40t2):4<rro>3' ti 2'
7 t"irr* the Burgers vector of the perfect
dislocation and. a, the lattice parameter.

We shall examine this process in detail.
The Burgers vectors of the loops (S) and
(F) are perpendicular, which allows us to
neglect their elastic interactionlr). There-
fore, the loop is subjected to two forces:
its line tension, which tends to shrink it,
and the stacking fault energy which tends
to develop it. If we assume that both
stresses are isotropic, the equilibrium shape
of the Shockley partial will be circular.

We assume now that the Frank sessile
loop is circular. We shall show in our ap-
pendix that this assumption does not restrict
the validity of our conclusions. From the
preceding remarks it results that the place
where the Shockley partial is nucleated is
irrelevant8). We shall, therefore, place it at
the center of the Frank sessile loop.

Let us examine at first the energy neces-
sary for the nucleation of the Shockley partial
(S), that is the energy necessary to create
a Shockley partial of radius 60, Do being the
core radius. Since Ds < 6o ( zbslt) , the creation
of such a loop involves the motion of few
atoms in the region of the core. Moreover,
the strain energy of such a small loop is

very low. Therefore, we can say that the
energy for the nucleation of the loop (S) is
small.

FiS. 1. Model used for the calculation of para-
graph 2.

F<-rr example, if we take bo:lgu and if we
use for the line tensiontt) overestimated value
of 0.5Gb2, we get for the activation energy
5 eV. Therefore, it is not unreasonable to
assume that the energy necessary to nucleate
(S) is of the order of one or two electron
volts. In all our further discussion we shall
neglect the nucleation process.

We shall now study the propagation of
the loop (S). For this we will make use of
the notations of Fig. 1 and calculate the
total energy of the configuration, taking the
zero level of energy when the radius r of
the Shockley partial is equal to bo. The
energy will be the algebraic sum of a line
energy and of the surface energy

W : ffiZn, toe f,- rr, r + ttboz r (1)

where G is the Young modulus, 7 is the
stacking fault energy, K is a constant lying
between 1-r, and l and related to the charac-
ter screw or edge of the dislocation, and u

is the Poisson ratio.
Introducing K in formula (1) is indeed

contradictory with the assumption that the
line tension is isotropic. K, however, varies
for f.c.c. metals between 0.65 and 1. The
validity of our calculation is not restricted
if we choose for K an average value of the
order of 0.8.
By setting

fu:# Q)4rcKbo

and

Ws:v$.zr. (3)

we can write (1) as
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*:*,(T"-*-t't.i) (1')

13

In order to know whether or not the loop

(S) will expand, we must take the derivative
d.Wldr and study its sign

4!:zYn(be'+-r+\ . (4)
dr - 6o\ "Do r"bo/

Before studying this equation mathematical-
Iy let us remark first that our analysis
applies as well to the transformation of a

perfect prismatic dislocation loop into a

Frank sessile loop by splitting of the perfect
.dislocation into a Shockley partial and a

Frank sessile').
(a) If r>r", dWldr is never positive. The

€nergy decreases when the Shockley partial
grows. This means that only perfect dis-
location loops are stable in such metals. If
a Frank sessile existed in such a metal, its
transformation into a perfect loop would
need only the small activation energy neces-

sary to nucleate a Shockley partial.
The numerical value of 7" cannot be cal-

culated accurately because it depends on Do

which is unknown. As said previously

Fig,.2. Plot of the energy uersus the radius of
the Shockley partial dislocation.
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bsSbo<2bs

and therefore from formula (2)

r":(4.b+1.5) l}-'zGb.

From formulas (2) and (6) one can easily
see that r" is of the order of magnitude of
the stacking fault energy y* of a metal in
which dissociated dislocations are one Burgers
vector length wide.

More precir"ty r":ff i.e., 0.85r*5r"3

7.7r*. Therefore, it is not likely that
metals can have a stacking fault energy
larger than r,.

(b) If T<r,, dWldr is at first positive
and then negative. Therefore as a function
of r, W increases until r reaches the value
r", arrd then decreases monotonically until it
is equal to 0 when r:R" (Fig.2). The trans-
formation is only possible through an activa-
tion energy 77,u. Wu is represented in Fig.
3 as a function of the ratio rlf".

By calculating Wo through Eqs. (2), (3),

and (5) one gets

I4lo:(0.15+0.05)GDs-1eV . (7)

By looking at Fig. 3 one sees that WN in-
'creases smoothly when 7 decreases from 7"

o
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to 0,4f" and increases very rapidly when 7"

decreases from 0.47" to 0.
This means that for metals with low stack-

ing fault energy (f S4f ) the activation energy
W* is very high, and for metals with inter-
mediate stacking fault energy (0.4f"5f <f")
the activation energy is quite low, of the order
of leV.

We can now discuss the stability of the
loops with respect to their size R*. For
this purpose we have represented in Fig. 4
the variation of r" and R" as a function of
f lf ". They divide the plan into three
regions a, b, and c. We have drawn a line
corresponding to R:504 cor.esponding to
the minimum radius of the loops which can
actually be observed by electron microscopy.
We remark that this line cuts both r"lf lr"7
and R"lyly,l for values of 7 smaller than
0.4r,.

We shall consider three cases:
First case

R<r" Region a

The stable configuration is still the Frank
sessile loop.
Second case

r"<R<R" Region b
The stable configuration is still the Frank

sessile loop. However, the transformation
of a perfect prismatic loop into a Frank
sessile needs an activation energy which is
quite low for metals with intermediate stack-
ing fault energies (0.4r"5r{r") and quite
high for metals with low stacking fault
energies (r50.4y"1.

In fact, loops lying in this region can only
be observed in metals with low stacking
fault energy (r<0.4r).
Third case

R> R" Region c

The stable configuration is the perfect
prismatic loop. However, the transformation
of a Frank sessile loop into a perfect prisma-

S.o.nnl

tic loop needs an activation energy W,t
which can be very high for metals with low
stacking fault energies and reasonable for
metals with intermediate stacking fault
energies.

3. Comparison with Experiment
The behavior of dislocations in face-center-

ed cubic metals has been shown to be close-
ly related to the value of the stacking fault
energy 7 in these metals")'"). Therefore it
is of great importance to know accurately
the latter quantity. Unfortunately, as a
result of the great difficulty of making direct
measurements, the figures found in the litera-
ture give widely scattered values of 7. For
pure copper, for example, we find measured
values of 7 varying from 40 ergs. cm-'tt) to
170 ergs. cm-"'.

We shall discuss in this paragraph the ac-
curacy of the method for estimation of stack-
ing fault energy which consists of measuring
the size of quenched loops in face-centered
cubic metals.

We conclude from the analysis done in
paragraph two that metals in which Frank
sessile loops are observed have a stacking
fault energy 7 lower than the critical value
Tc. This is the case of gold, silver, copper"'
and aluminum'o). We give in Table I the.
values of 7" calculated from formula (2)..

These values are indeed much larger thanr
values quoted in the literature.

Nothing more precise about the stacking
fault energy can be concluded from the
measurement of the radius of the Frank
sessile loops. This results from the meta-
stable loops of both types can be observed.
Therefore, previous estimates of 7 based on,

this method are not accurate.
Before discussing in detail the situation

for each metal, we shall make some remarks.
on the formation of the loops.

In metals with stacking fault energies.

Table I. Values ol y" for usual f.c.c. metals.

Cu

550 350

* .B determines the maximum value of r.

Au As AI Ni Pt

/o €rgs. cm-z within

40%
360 390 860 780
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lower than T", the discs of vacancies lying
in (111) planes probably coalesce into Frank
sessile loops, and grow as Frank sessile loops.

When they are large enough they can trans-
form into perfect prismatic loops needing an
activation energy W*. As shown previously
W, is small for metals for which 0.4r"!r<
r" and large in metals for which y{0.4y".
In that case, the Frank sessile loops will not
transform into perfect prismatic loops.

Therefore, such loops can be obtained either
by the breaking <if a helix or by coalescence

of a disc of vacancies lying in a plane dif-
ferent from (111). In both cases the loops
can rotate toward the (111) Plane.

If we start with such a perfect prismatic
Ioop lying in the (111) plane we can say that
it is stable when its radius is large enough
(R>fi"). If we anneal it, it shrinks and,
while its radius decreases, it becomes at first
metastable then transf orms spontaneously
into a Frank sessiie loop.

The measure of the critical radius at which
the transformation occurs gives a good esti-
mate of the activation energy for perfect
loops lying in the (111) plane. When 7'> 0.47', ,

the critical radius is very small and, there-
fore, if observed during annealing in the
microscope, such loops will becorne too small
to observe before transformation. If 7<0.4y"
the transformation will occur for an observ-
able value of the radius. Moreover, the ac-

tivation energy I7,,, is so high that we can

neglect the transformations occurring in the
metastable zone.

Let us now consider each case in detail.
Aluminunt For a long time only perfect
prismatic loops have been observed in this
metal". More recently Frank sessile loops
have been observed in very pure aluminuml4).
This suggests (a) that the stacking fault
energy of aluminum is smaller thar-r 1,, (b)

that other factors than the stacking fault
energy play a role in determining the type
of loop that is formed (impurity content for
example), (c) annealing experiments on very
pure aluminum should at least show whether
or not the stacking fault energy 7',rr is higher
than 0.4y.. Such experiments have been
performed with less pure aluminumls). No
transformation was observed which suggests
that

140 ergs. crr-'<1.17<350 ergs. cm-'

Copper Both perfect and imperfect disloca-

tions have been observed in this metalr).
Annealing experiments should provide some

information on the value of the stacking
fault energy.
Siluer Perfect and imperfect loops') and'

tetrahedra'6' have been observed in silver.
From a study similar to ours done by Czjzek,

Seeger and Mader'o' we can conclude that the
stacking fault energy of a metal, in which
tetrahedra are observed, is lower than 1"-
2xl0-' Gb.

Since this value is of the order of 0.4J",

annealing experiments of the perfect loops

lying in the (111) planes must probably allow
us to actually observe the transformation of
perfect loops into Frank sessile loops and

therefore to have a good estimate of the
stacking fault energy of silver. Nothing
more can be said at the moment of the other
f.c.c. metals.

APPendix

1. Propagation of a Shockley partial which
has been nucleated at a corner of a tri-
angular Frank sessile looP (F).

The purpose of this first section is to show

on a very rough model that the orders of
magnitude of the quantities calculated in part
of our paper are not dependent upon the
geometry used.

We theref ore suppose that a Shockley
partial (S) has been nucleated at a corner
(A) of an equilateral triangle shaped Frank

sessile (F) (Fig. 5a). The Burgers vectors D^s

u.,d Dl are perpendicular. Therefore the
equilibrium shape of the loop is a p<irtion of
circle tangent at (N) and (P) to the sides of
the triangle and we look at its propagation

C

Fig. 5. (a) Model
appendix 1. (b)

of appendix 2.

used for the calculation of
Model used for the calculation

(b)(o)
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in the same way as we did in Section 2 of
our paper. The main difficulty in calculat-
ing the total energy comes from the fact
that we now have to calculate the energy of
the irregularly shaped ANPA dislocation loop.
We shall therefore make the assumption that
the line tension is no different than the line
tension of a circular loop which is quite
rough but must not change the order of
magnitude of the result.

With the same notation as in Section 2 of
our paper and with the same conventions
for the zero energy level we calculate the
total energy (W)

r r rr v\W'- Wo ( 2r Log---!-;+I )
\ Oo T.Oo T"/

with

w,' :(+* a) ry. -1.17 wo .
\J tr /

By comparing thes: equations to Eqs. (1/)
and (3), it is obvious that the only results
which are changed are related to the total
energy (W) which is increased by less than
20%. Therefore the main conclusions of our
paper are not changed in this case.

2. Propagation of a Shockley partial toruard
the corners of an equilateral triangle shaped
dislocation.

Suppose that a Shockley partial has been
nucleated at the center O of a stacking fault
triangle (F) and that it has grown to become
tangent to the sides of the triangle in MNP
(Fig. 5b). Let us assume that a further step
is represented by the situation P/P//M/M//N/
N"P'. The segments like N'P'are supposed
to be circular and tangent to the sides of
the triangle.

We shall now calculate the energy neces-
sary for the sweeping of the total area by
the Shockley partial. To do this we shall
use besides the assumptions of part 2 of our
paper the following assumption: the line
tension r of the loop P'P"M'M"N'N"P' is
constant and equal to the line tension of the
loop PMN. We shall take the zero level for
the energy when the Shockley partial is in
the position PMN with radius lL/T16, where
/ is the length of the side of the triangle.

The energy is then

W : B/T - illtr r' -2, r, - * - +l

S.q,A,o.4.

One sees that in order to reach the corners
of the triangle, the Shockley partial must
overcome a potential barrier of the order of
/W:-W(r"), where r":Tlr .

With loops of reasonable size (/-1504) ttre
potential barrier can be shown to be of the
order of 5eV for metals with high stacking
fault energy and can be as high as 50 eV
for metals with low stacking fault energy.

Therefore, it is not likely that triangular
shaped loops can be transformed into per-
fect loops by a simple glide process.
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