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Energy Losses by Hot Electrons in Solids:

A Semiclassical Approach

A. ROSE

RCA Laboratories, Princeton, New Jersey, U.S.A.

The rates of energy loss by fast electrons to the various types of pho-
nons and electronic excitations are derived in approximate form from an
elementary classical model. Energy is emitted as a series of "energy-
wells" in the wake of the moving electron. The quantum aspects are
introduced as constraints on the classical model.

The rates of energy loss by fast electrons to
the various types of phonons and electronic ex
citations have been analyzed and reported in the
literature over the past fifty years. These anal
yses have for the most part been carried out
in momentum space. The following is an attempt
to restate the arguments in "real space" and in
terms of an elementary model.
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Fig. 1. Model for computing rates of energy
loss.

The model in Fig. 1 shows a particle moving
with velocity v past a series of elements, each
of dimension d. The particle repels each element
with a force such that, for a stationary particle,
an energy E„ is stored in the compressed spring
of the element. Also the frequency of vibration
of each element is denoted by w.
The maximum rate of loss of energy to the

array is, by inspection.

and occurs at v^tod. Equation (1), applied to
energy loss to polar optical phonons, gives (afKo)w

where atim is the interaction energy of the polaron.
This agrees with the results of perturbation
theory.'"^'
The rate of loss of energy, in general, for v>

o)d is

=EJj^y JL=E^d-^ . (2)
dt \ V / d V

The factor (wdlvf is the reduction in magnitude
of the energy-well due to transit of the par
ticle past an element in times short compared
with 0). The factor vjd is the number of wells
traced out per second.
Equation (2) is the essence of the "real-space"

argument. In order to apply it to electrons in
a solid the value of the energy-well must be
determined in each case. E„ is the interaction

energy between the stationary electron and a
particular mode of energy loss in the medium.
For those cases where the electron couples to

the medium via its coulomb field we can write:

or, in differential form,

where ^ is, by definition, the fraction of the
available coulomb energy e^l(Kd) that is used to
form an energy-well. K is the dielectric constant
for frequencies higher than that of the emitted
radiation. Equation (3) is inserted into eq. (2}
and integrated to give:

dt ^ Kv fiw '

in those cases where ̂  and to are constants. The
limits of integration are the uncertainty radius
ttjmv and the adiabatic radius vjo). In those cases
where j8 or to are not constant, the maximum
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Table I. Rates of energy loss (dEjdt) by electrons of velocity v

Phenomenon

Polar Optical

Piezoelectric Phonons

Acoustic Phonons

Non-Polar Optical
Phonons

r eo— ~| e^co^ / 2mv^\
L  £0 J coof \ tia> }

Note:

;r r £p' 1 eV
4 Lkc] Kv

Note: 2mv=hwlv,

1 r BWK -| eV
4 L 4i:e^pv,^ J Kv

Note: 2mv=hu)lva

1 r -| eW
2 L J Kv

Note: ll2mv^>ft<o

Source

Frohlich"^'

Callen^i

Seitz^'

Con well® I

Conwell®'

x-Ray Levels

Plasma

Cerenkov

r (Dp® ~| J 2/nn®
L (Oe^ A V ^ tuva

£j low frequency dielectric constant

Bohr®'

Bethe"

Note:
m

^<u«=Excita,tion energy of x-ray levels

\j2mv^>h(i)a

(2mv^\

Note: (u=plasma frequency and \l2mv^>ha>

Pj 1 -1 eV
L  £oo J V

Note: «=c=velocity of light in vacuum

Bohm and

Pines®'

See e.g.
Schiff®)

£« high frequency (optical) dielectric constant Va phase veloc:
K dielectric constant v velocity of
Bp piezoelectric constant o> angular free
C elastic modulus (dynes/cm®) m effective ma

B deformation potential (electron volts in ergs/unit strain)
D optical deformation potential (electron volts in ergs per

centimeter relative shift of sublattices)

p density (grams/cm®)
Va phase velocity of sound
V velocity of electron
0) angular frequency of radiation
m effective mass of electrons

■contribution to the integral occurs in the neigh
borhood of a particular radius and becomes:

Equation (4) is the form in which the energy-loss
expressions in Table I are recast from the litera
ture. The values of p are set off in square
brackets.

It can be shown by an elementary argument
that for the losses to phonons j8 is also equal to
the ratio of electrical to total energy of the cor
responding macroscopic sound waves. [See RCA
Rev. 27 (1966) 96 for calculations of and

their relation to the acoustoelectric effects]. For
acoustic and optical phonons coupled by defor
mation potentials, p was computed as if the slopes
of the deformed band edges were a macroscopic
electric field. The same result is also obtained
directly from eq. (2) by computing the energy well

formed by an electron with an uncertainty
radius fil(mv).

The value of ^ for plasmons is unity since the
coulomb field of the "stationary" electron is
substantially completely cancelled by the polariza
tion field induced in the plasma. Similarly, in
the case of the deep-lying or x-ray levels, only
the fraction a)//co/ of the coulomb field of the
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«lectron is cancelled by the induced polarization
field. Hence, it is only this fraction of the cou
lomb energy that is used in forming an energy
well.

The quantum constraints on the classical model
appear as the threshold conditions that the elect
ron must have at least the energy and momentum
of the quanta or radiation it emits. Also, the
radius of the electron within which its charge is
eifectively smeared out is given by the uncertainty
relation rx.ftl{rnv).

This paper is based on work done in collabora
tion with Professor George Whitfield, Penn State
University. The work was supported in part by
the U.S. Army Research Office-Durham, Durham
North Carolina and by the U.S. Army Engi
neering Research and Development Laboratory,
Fort Belvoir, Virginia.
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DISCUSSION

Landsberg, P. T.: Could you say if loss by impact ionization could be included in your
last Figure ?
Rose, A.: The application of this model to impact ionization is included in the complete

paper due to appear shortly in the RCA Review.


