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Owing to the dependence of the dielectric constant on the deformation
of a semiconductor, an additional electron-phonon interaction arises in the
case of an externally applied electric field. It may happen to be dominant
in crystals with a very large dielectric constant (of the order of thou
sands). Along with the deformation potential, this interaction is introduced
into the theory of the amplification of sound waves by the drift of current
carriers. The theoretical value of the amplification factor obtained is not
less than in the case of piezoelectric interaction.
A new type of wave is considered, a space charge wave, which can

also be amplified at any type of electron-phonon interaction. The intro
duction of a strong magnetic field raises appreciably the Q-factor of this
wave and facilitates the conditions for its realization.

An electron-phonon interaction proportional to the external field is in
troduced into the theory of mobility. The current as a function of the
field will first rise, then fall.

§ 1. Introduction

The possibility of generating hypersound by
current carriers was indicated in 1956 by Tolpygo
and Uritzky^' who considered a polaron moving
at supersonic velocity. That same year, Weinr-
eich^' developed independently a detailed theory
of the amplification and generation of hypersound
by current carriers. In his work, as well as in
the more general studies by Spector," Weinreich,
Sanders, White,*' in Kazarinov and Skobov's
work®' and in a number of other studies the

electron-phonon interaction was determined by
the deformation potential. A stronger electron-
phonon interaction and sound amplification take
place in piezoelectric crystals in which Hutson,
McFee and White were the first to succeed in

observing amplification of sound experimentally.®'
The theory of amplification in these crystals was
developed by White," Herzenstein and Pustovoit,"
Gurevich" and others.

The present study differs from those mention
ed above in the following;

1) A new type of electron-phonon interaction
is considered, which is proportional to the ex
ternally applied electric field. In crystals having
a large dielectric constant of the order of 2000
(such as barium titanate, rutile, SbSJ and the
like), this interaction is dominant and would
permit to obtain high amplification factors of
sound waves if a sufficiently high drift velocity

of the current carriers could be produced in such
a crystal.
2) A new type of wave (space charge wave)

is considered. This wave is amplified when the
drift velocity of the carriers is below sound
velocity {i.e. under conditions opposite to sound
amplification). Amplification of the wave can

be brought about by any type of electron-phonon
interaction. A strong static magnetic field appli
ed to the crystal will appreciably raise the Q-
factor of this wave and facilitate its experimental
realization.

§2. Wave Equations and Their Solution

As we are dealing with waves whose length
is greatly in excess of the lattice constant, with
the deformations of a crystal and the bunching
in it of the concentration of current carriers, the

state of the crystal can be described by two in
dependent macroscopic continual degrees of free
dom: the vector of elastic displacement of the
medium u(t, t) and the density of the space charge
p(t, t). The latter is specified by the change
in the concentration of electrons not only in the
conduction band, but also on those local levels

with which the band electrons are able to reach

a state of equilibrium at the frequencies being
considered. Therefore,

e(n-n^)=qp q<\ , (1)

where e is the charge of the current carrier, n-
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their concentration in the conduction band, Ko"

the concentration of carriers in a neutral semi

conductor, ̂-frequency-dependent constant taking
into account the change in the filling of the local
levels mentioned above. In eq. (1) we ignored
the comparatively small contribution to p due
to the change in the concentration of charged
donors, caused by the deformation.

Consider, for the sake of simplicity, an iso-
tropic medium. During deformation its dielectric
constant changes and becomes a tensor:

Sift — fil^ik^tV tl J (^)

where Ui^={\jl){dUildx,c-\-du,cldXi) is the tensor of
strain, and soi gu gz are constants. If an average
uniform electric field is externally applied to
the crystal, then owing to the dependence of e.j,
on the coordinates the conduction electron will

be acted upon, in addition to £"0, by an addi
tional field which is determined from the

following equation:

(r, E^)=(g,+-f^{E,, fr)(fru)+fE,Ju . (3)
Besides, there is also acting a field Ep created
by the space charge (divEp=(4Kleii)p), as well as
a force determined by the deformation potential.
As a result, the conduction electron is acted
upon by the field

e

E—E(,-{-E^-\~Ep

A unit volume of the crystal lattice is under
the action of the force

F={k+p)r{r> u)+pdu+-jfrp

+^{giFE'+glE{fr, E) + (E, F)E]} . ( 5 )
o TZ

Herein X and p are the Lame coefficients, the
first two terms in eq. (5) represent the conven
tional elastic strain force, the third term is the

reaction of the deformation potential force ap
plied to the lattice, Z)-the deformation potential
constant (some average for the band electrons
and for the localized electrons which are in

equilibrium with them), the last term in eq. (5)
■denotes a force of the electrostrictive type. A
detailed derivation of eqs. (1) to (5) and the
elucidation of the meaning of the coefficients q
and b are given in eq. (10).

Let us further consider small oscillations of
u{t, t) and p(r, t). They are determined by the
equations yU=F, where j- is the density of the

crystal, and jt>-l-£?/v/=0. Assuming u and p pro
portional to we obtain the following
equations for the amplitudes of these quantities:

(;i-b/;)(£, u)k-\-pk^u—yoJ^u

=^[(^i+^)(^. E,)(k, u) +S^k\E„ u)
-^k\k,u)^. (7)

It is assumed here that in addition to the electric
field Ep there exists an external static magnetic
field H and the density of the current is equal
to

J=enpHE*—eDg^n (8)

where pn and Djj are the tensors of mobility
and the diffusion coefficient of the current carriers
in the presence of a magnetic field. Notations
were introduced as follows;

0=enopH —=
r

■\=—+q{k. Dak)
T  r

4Tt(k, ok)
e,k'

v=phEo ,

in which v is the drift velocity of the current
carriers.

By projecting the vector eq. (6) on a direction
perpendicular to k and Ep we obtain the equa
tion of a conventional transverse sound wave.
It does not interact with p and Ep and is not
amplified. The remaining projections of « are
determined by projecting eq. (6) on a direction
parallel to £(| |) and perpendicular to k lying in
the plane k, Ep{±). Introducing the notations

-(f)'"
-longitudinal sound velocity.

-transverse sound velocity,

k,=^
Si

k,=—

{gi+gi)E,\\+i—k
^1= siV r

we obtain from eq. (6)

"11= siV r(^^-V)
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and eq. (7) can be written down in the form

=-^ [ «ii + ̂2^2l/y«x] • (12)
Equations (11) and (12) determine the wave

amplitudes U\\, and p. The solvability con
dition of these equations is

t'it 1
47C l+iT'\p(k, v)—C»1 1 j

which shows the relation between k and <o, i.e.

the wave dispersion law. For the given m and
direction of k eq. (13) yields three A:-roots. The
three corresponding waves are of the mixed charge-
acoustical type, since each has all the three quanti
ties H||, Mx P different from 0. The roots
of (13) are readily determined by tabulation if
the parameters so, r, r', v, q, k^, k^, and ^2
are known.

However, if we assume that the electron-phonon
interaction perturbs but slightly the waves which
exist in the medium without this interaction, i.e.

that the right-hand parts of eqs. (6) and (7) are
small compared to the separate terms of the left-
hand parts, then simple approximate solutions
will be obtained for all the three types of waves:

1. For the wave having k^ik^-.

k-k^ So 1-%V||/j-1]cut'
7  —"o l^ll 1 , r ,-,2 2 /2 »ki 8;r T l+[g'Vii/j—1] (u t'

in modulus than the sum of the first two terms.

If waves with rising (in space or in time) ampli
tude are of interest, it is necessary that the
imaginary part of k should be negative, i.e. the
third term should be greater than the second one
in modulus. These conditions lead to the in

equality (ur'>l which allows eq. (16) to be
written down approximately as follows:

,  (O I
k~ H 7

qv\\ qv\\T

^Tzqvwv

1-^(1

where s=wlk is the phase velocity of the charge-
acoustical wave, Vii-the projection of v on the
direction of k. From eq. (11) it follows mh >1/^,
ie. this wave is almost longitudinal.
2. For the wave having kmk^;.

k ko So T \ 1 Ijftxr /ic\
—:——"o 15'2| , , r—; „2 2 /2 • '

A:2 8jr T 1-l-[^Vii/5—1] ox r

This wave is almost transverse. In eqs. (14) and
(15), k^ and k^, respectively, should be substitut
ed for k in the expressions for and r'.

3. For the wave having A:!5i/:3=ox/^V||+//5'V||T':

I  .

qv\\ qvwT ^-Kygvo \ j ^1'

For the method of weak electron-phonon coupl
ing used to be valid, the third term in the right-
hand part of eq. (16) should be considerably less

p __£i p ^2
pi— , P^~~— •

qvn qv\\

If and ̂ 2 are greater than unity, that is, the
drift velocity is less than the sound velocity, the
corresponding terms will introduce a negative
contribution into the imaginary part of k.
The wave under consideration is predominant

ly a space charge wave, since at the given ampli
tude p in accordance with eq. (11) U\\ and i/x
will be as small as the coefficients of the elec

tron-phonon coupling and ^2-
The above-mentioned electron-phonon coupling

proportional to the applied field is represented
in eqs. (6), (7) and (10), eq. (13) by terms con
taining Eo, which enter along with the deforma
tion potential constant b.

§ 3. Discussion of Results. Evaluation of the
Amplification Factor. Case of a Strong

Magnetic Field

Equations (6)~(17) differ from those obtained
in our study"' only in that they take into con
sideration the magnetic field applied to the crys
tal. Therefore, the mobility and diffusion coef
ficient are now tensors depending on H, and for
T, r' and v more general expressions are now
given and the values of these parameters are also
dependent on H. For the rest, the formulas-
have not changed their form.
Inasmuch as Einstein's relation D^={koTle)pH

is also valid in the presence of a magnetic field,,
the ratio y jv is independent of H\
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\+kV
jg/Cf)Tei,

■where is Boltzman constant, r-Debye shield
ing radius. In the evaluations below, t'It is
.assumed to be the order of unity.

The absorption coefficient of two sound waves
is equal to

t' {qvnls—l)coT'
(Xi— A.,-—

r l+[g'V||/j-l)a)r ]

y=l,2.

The maximum value of —aj is equal to (ll2)Kj
and is independent of the magnetic field.

For the evaluation of the coefficient let us
use Lorentz-Lorenz's formula in its generalized
form e—l/e-|-2=const. xj*. Then we obtain
.,fi=(eo-F2)(eo —l)/3eo»eo/3 and there is no reason
for believing that might exceed that order of
magnitude. If the term with b in the expres
sion for is neglected in eq. (10), then

3x7 2
V ^(^^0 ^0 II""'=36^7 •

At the frequency 45 megacycles per second, £(,=
2000, £oii = 10^V per cm, Ji=2xl0^cm per sec,
y=4 we obtain .Sri=695cm~\ This will cor
respond to an amplification of sound 1500 db
per cm. In the case of a piezoelectric electron-
phonon coupling, the amplification factor is also
proportional to (u. For the same frequency in
•CdS the value of the maximum amplification
factor computed is equal to 110 db per cm.®'
Thus, the type of electron-phonon coupling as
considered in the present study, in substances
with an abnormally high dielectric constant, may
lead to an amplification of sound no lower than
the piezoelectric coupling.

The third wave, the space charge wave, pos
sesses a phase velocity approximately equal to
qv\\ at all the frequencies, and it may be, there
fore, called the drift wave. It can be amplified
at the expense of the imaginary part of the third
term in eq. (17), codsisting of two components
each of which as a function of Vu has a max
imum, respectively, at qv\\—Sj(\ — \la)T'), j=\, 2:
<Dr'»l. The half-width of either maximum is
equal to qAv\\=l\/ Ssfianr', i.e. it is small.
Therefore, the maxima do not overlap and the
amplification due to each of the components
within the braces of eq. (17) can be considered
independently. In the maxima

SjT 2

where Kj is determined by eq. (19). The third
wave differs from the first two in that the com
ponent 21SjT appears in the expression for
This component is independent of the electron-
phonon coupling and causes dampling of the
wave. Amplification takes place if the second
component predominates in eq. (21), which is
also possible in the absence of a magnetic field.
Thus, in the numerical example above Equ = 10® V
per cm and ^vn «iJi=2x 10® cm per sec, hence
qfjQ=20 cm® per Vx sec, qD—0.5 cm® per sec. At
the frequency 45 megacycles per second qDk^=
10® sec"'. If Ho=5.3x10" cm"®, then 1/t' = 2/t=
2x 10® sec"' and2/5iT'=20cm"', which is consider
ably less than (l/2)Afi. However, at higher con
centrations of the current carriers the first com
ponent in eq. (21) may appear to be predominant.

The inclusion of a strong magnetic field is apt
to increase substantially r and r', i.e. decrease
2/Jjt' (raise the G-factor of the third wave). By
a strong magnetic field is meant to be the case
when the cyclotron frequency of the carrier con
siderably exceeds the inverse of the time of free
path. Then, the tensor ftjj is readily determined
from the equation

liHE=p^e{e, £')+^[e, E]A-^fi.E-e{e, £')]H

where E is an arbitrary vector and [if, is the
mobility in an isotropic medium in the absence
of magnetic field.'" If the free path time of the
current carrier is where v is the thermal
velocity of the carrier, the constant Q will be
determined from

0= i2, V tt et\2kf,T) \ 2 )
r(n)=\^e-'^x^'-fix , (23)

where c is the velocity of light, w-the effective
mass of the carrier.

As an example, consider the case of H±_k.
Then {k, [iHk)=(QlH^)k^ is a quantity of the
second order of smallness with respect to IjH,
T and t' being large and proportional to H".
If, in addition H±_E„, then the drift velocity

v=^[«,£„] + ^£o+-
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and the Joule heat liberation becomes a small

quantity ~l/if^.

§4. Mobility of Current Carriers, Taking into
Account the Electron-Phonon Interaction

Proportional to the Applied Field

The above-mentioned electron-phonon interac
tion as the cause of electron scattering was in
troduced into the kinetic equation along with
other scattering mechanisms."' The calculation
of mobility as based on the kinetic equation has
shown that the result differs but to 5% from

that obtained from Mattisen's rule according to
which

,  (25)
fl fll

where (i, is the mobility due only to the above
interaction and ;«i-the mobility due to all other
scattering mechanisms. For n, the following
expression has been obtained"':

io

L 2(^1+^2)^2 J

r,-temperature of current carriers.
As a result, the current density will be

a

where ai is the conductivity when only the other
scattering mechanisms are acting. With growing
E„, J passes through maximum which is achieved
at a value of E,, of the order of 10° V per cm.
The dropping section of the volt-ampere character
istic is unstable and may be utilized for the
generation of oscillations.
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