
Journal of the Physical Society of Japan Vol. 34, Supplement 1973
Proceedings of the International Conference on Nuclear Moments and NucleA Structure^ 1972

Nuclear Moments and Related Structure of Vibrational
and Transitional Nuclei

T. Tamura and T. KishimotqI^

Center for Nuclear Studies* University of Texas, Austin, Texas 78712, USA
^Niels Bohr Institute, Copenhagen, Denmark

(Presented by T. Tamura)

It is shown that the Boson expansion technique describes quite well the transition from vibra
tional '"^'Sm to deformed '^"'Sm. It is also shown that it predicts large quadrupole moment of the
2t state of ""Cd, without making the 2J ̂  0/ transition probability too large.

To explain the properties of the so called vibrational nuclei has been one of the pending
problems of the theoretical nuclear physics in the past two decades, and in fact many attempts
have been made with different degrees of success. However, recently our qualitative under
standing of these nuclei has been modified significantly, motivated by two major types of
experiment. One is the discovery of the large static quadrupole moment, Q2, of the first excited
2+ state in these nuclei, while the other is the measurement of the energies of the yrast 0+, 2+,
,6* . . . states, which showed that AEj = Ei—Ej_2 continue to increase with increasing

Both of these experiments show that the vibrational nuclei, believed to be basically spherical,
have features that resemble rather strongly those of deformed nuclei.

This fact does not of course mean however that a theory which successfully describes
deformed nuclei can also explain the vibrational nuclei. Rather it means that one should
attempt to construct a theory which can describe vibrational and deformed nuclei, and con
sequently transitional nuclei, on one footing, rather than to construct a theory which is specifi
cally attempting to explain only the vibrational nuclei. In this regard it is worthwhile to note
two recent works reported by Bes, Greiner and their co-workers'^^ who showed that, if a
Hamiltonian for an quadratic oscillater is supplemented with appropriate unharmonic terms
and if this whole Hamiltonian is diagonalized in a large multiphonon space, it is possible to
obtain theoretical spectrum that have a nature of that of well-deformed nuclei. Since the same
theory of course gives purely vibrational spectrum, if the unharmonicity term is suppressed,
we see that a theory which we were seeking for has been found. Only task remains is to derive
an appropriate Hamiltonian, the derivation being made in some microscopic way.

Since it seemed to us that the Boson expansion technique was one of the best ways, known
to date, to serve this purpose we started to work on it some two years ago. The basic idea of
this technique was first proposed by Belyaev and Zelevinsky,®^ and later was extended and
applied by Sprensen®' to a fairly large number of nuclei. In many respects our approach''^
follows very closely that of Sorensen. However, we have succeeded in solving the equations
for the Boson expansion coefficients exactly. This has been done so far to sixth order and to
continue it further, if necessary, does not offer any unsurmountable difficulty. Because of this
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and of the introduction of a few additional algebraic techniques, the Boson Hamiltonian has
been obtained in an extremely compact form, including terms that are of sixth order in the
collective branch of the Bosons. In the numerical calculations which has been done so far and
are to be presented here, however, only terms up to the fourth order have been included,
although the coupling of the collective branch with the noncollective branches was taken into
account in an approximate way, using a specific form of the closure approximation. It turned
out that this coupling played a rather significant role, in getting good agreement with experi
ment. The effective interaction taken was a sum of particle-hole type quadrupole-quadrupole
interaction and the pairing interaction of both monopole and quadrupole nature. The strength
parameters of these three forces will be denoted as x, Go and G2, respectively.

In order to see to what extent we can describe the transition of the nuclear properties
from vibrational to deformed, by going through the periodic table, we first chose Sm isotopes
in which it is known that has a strong vibrational nature, while is considered as
one of the most typical deformed nucleus, i®°Sm and ̂ "Sm then having rather typical transi
tional nature. Actually a similar calculation has already been made by Sprensen,®^ and he
succeeded in reproducing to a large extent the different properties of and '®^Sm. In his
calculation, however, the absolute magnitudes of the excitation energies, particularly of ̂®^Sm,
were about a factor two too large compared with experiment, perhaps because his multiphonon
space was not large enough, and also because the coupling between the collective and noncol
lective branches was not taken into account sufficiently. These two difficulties do not exist in
our calculation, and we in fact obtained satisfactory agreement of the energy spectra of the
yrast states for all these four isotopes ^'^^Sm- including the absolute values of the
excitation energies. This can be seen in Fig. 1.

In order to show further that the electromagnetic properties of these nuclei can also be
described rather well by our theory, we compare in Table I the experimental and theoretical
values of Q2 and B(E2; 2+^>0+). As is seen, the agreement is quite good though a few small
discrepancies do exist. In this table theoretical values of Kumar®^ are also given, which agree
with experiment to more or less the same degree as do our results. Note, however, that in fitting
the data of i®°Sm and ̂ "Sm, Kumar introduced an adjustable parameter, the "inertial renor-
malization factor," and thus his treatment of the kinetic energy part of the Hamiltonian has
been phenomenological to some extent. Also no calculation has been made for ®Sm.
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Fig. 1. Comparison of theoretical and experimental energies of states of the bound band in Sm
isotopes.
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Table I. 62 and S(E2; 2f —>0J) in Sm isotopes. Theoretical values in parentheses are those of
Kumar (ref. 9).

-0.97 ± 0.27">

-0.96

0.151 ± O.Ol")

0.187

-1.31 ± 0.19°'

-1.12(-0.95)
0.272 ± 0.010"'

0.276(0.232)

-1.65 ±0.19"'

-1.56(-1.64)
0.670 ± 0.015"'

0.595(0.650)

a) D. Cline et al., presented at this conference V-18.
b) G. Casper et al.: Proc. Conf. on Heavy Ions, Heidelberg 1969.
c) R. M. Diamond et al.: Phys. Rev. C3 (1971) 344.
d) F. S. Stephens et al.: Phys. Rev. Letters 29 (1971) 1151.

In Fig. 2 we compare the experimental and theoretical spectra of '^osm and includ
ing states that belong to bands other than the ground band. As is seen, the theoretical heads
of the ̂ -and y-bands appear too high, although the spacing between states that belong to each
band are of right order of magnitude. This will mean that the potential energy surface also
drawn in Fig. 2 gives the equilibrium value of P2 correctly, but is too steep. We expect that the
sixth order terms, that have not been included so far, will make this potential energy surface
less steep, and bring down the band heads. In Table II a few .8(E2) values between states that
appeared in Fig. 2 are presented, and as is seen they agree with experiment rather well, although
fairly large discrepancies are occurring sometimes. We expect that the sixth order terms will
again remove these difficulties. Table II also gives theoretical values of Kumar.®^ They agree
with experiments somewhat better than do our present results.

Having thus seen that our theory works rather well for Sm isotopes, we shall now turn to

Vx„p,=0.86 Vxpp|0.82 Vxpp|0.92 Vxpp^=0.88

Fig. 2. Comparison of theoretical and experimental spectra for ""Sm and "^Sm.
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Table II. Comparison of 5(E2) values in ""Sm and >"Sm. Units are e^b\ and the theoretical
values in parentheses are those of Kumar (ref. 9).

Transitions

2,-4,

0, —•

4, — 2,
0, — 2y
2y —» 0,
2v-2,

0.94 ± 0.08"'

0.048 ± 0.010"'

0.86(0.77)

0.100(0.048)

1.81 ± 0.06

0.023 ±0.002

0.051 ± 0.006

0.090 ±0.012

0.0007 ± 0.0007

0.28 ± 0.04

1.55(1.79)
0.032(0.016)
0.017(0.076)
0.085(0.109)
0.001(0.0008)
0.013(0.250)

a) R. M. Diamond et al.: Phys. Rev. C3 (1971) 344.
b) R. J. Keddy et al.-. Nuclear Phys. A113 (1968) 676.
c) R. G. Stokstad et at.-. Phys. Rev. Letters 27 (1971) 748.

which has been considered as one of the most typical vibrational nuclei, and to explain
its large Q2 together with other related quantities has been one of our major concerns. As far
as Q2 is concerned, Tamura and Udagawa®' proposed sometime ago a model in which the
2j" and 2^ states are written, respectively, as a|l; 2> ±^1 - a^|2; 2> and a\2-, 2> y/l — a^\
1; 2>, where \N; /> stands for a purely vibrational state with N phonons and a spin I. When
the mixing coefficient a is determined so that the ratio 5(E2; 2^ ̂2i+) over 5(E2; 2;"-^0/) fits
the experiment, the calculated [gal is about 0.3 eb, in good agreement with experimental value
-(0.3~0.4) eb. The difficulty of this naive modes was that the ratio R = B(E2; 2^~0+)/
B(E2- 2}->■2}) = 0.14 predicted by this model was about one order of magnitude too large
compared with experimental value R = 0.015, although a similar but a more microscopic
approach reduced R to 0.047.

In our present calculation, it turned out that the major part of the 2t state wave function
has much the same nature as it was in our old model, thus giving Q2 = -0.37 eb, in good
agreement with experiment. The amplitude of the |1; 2> state in 2+ state turns out to be
about the same again as in our old model. However, we now have other components in 2}
state. Also 0+ state has mixture of higher phonon states. Thus the 22+->0/ transition amplitude
consists of several terms of a similar magnitude and they cancel with each other, giving rise to
R = 0.0003, which is now about 50 times too small. This smallness however does not need to
be taken as a serious difficulty. We have so far been treating only the collective branch explicitly,
which might become a poor approximation in the vibrational region. We believe that the
situation is improved largely, if our calculation is modified so that a few noncollective branches
are also treated explicitly. A trouble possibly of a similar origin can be seen in Fig. 3, in which
the theoretical spectrum of "'^Cd is compared with experiment. As is seen the energies of 0+
and states are too large. It is expected, however, that the noncollective branches explicitly
introduced will press down these states and thus remove this difficulty, although the sixth
order term may also play an important role here too.

Figure 3 also gives spectra of i°«Pd and ^"Te. Since behaves more or less similarly
as does we shall not comment about it any further. As for ^^^Te, the potential energy
surface given in Fig. 3 indicates that this nucleus favors an oblate deformation giving 62 >0,
in contradiction with experiment. We found, however, that it is possible to make 62 <0, by
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Fig. 3. Comparison of theoretical and experimental spectra for '"^Pd, ""^Cd and '^^Te.

slightly increasing the strength parameter Gj beyond the value = x/4, which has been used
in almost all the calculations reported in the present article. Generally speaking the theoretical
results for vibrational nuclei seem to be more sensitive, than are those for deformed nuclei,
to the choice of various parameters, like single-particle energies, force constants and so forth,
and thus will require somewhat more extensive search of such parameters.

Summarizing, we may say that our approach works quite well in explaining many impor
tant features of various collective nuclei, in spite of the fact that calculations so far made
are of preliminary nature. Admittedly, our calculations still have difficulties in various aspects,
but we have also seen that there seems to exist ways to remove them. Thus, for example, if
we are in or close to the deformed region, the inclusion of the sixth order term will help to
improve the situation. On the other hand, if we are in or close to the vibrational region, the
explicit treatment of the noncollective branches are expected to improve the theory. Such
extended calculations are under preparation, and results will be obtained shortly.

References

1) References to previous works can be found in refs. 7 and 9 below.
2) J. deBoer and J. Eichler: Advances in Nuclear Physics 1 (1968) 1.
3) See e. g. F. S. Stephens: Froc. Intern. Conf. Montreal, 1969 p. 127.
4) G. G. Dussel and D. Bes: Nuclear Phys. A143 (1970) 623; G. Gneuss, U. Mosel and W.

Greiner: Phys. Letters 30B (1969) 397.
5) S. T. Belyaev and V. G. Zelevinsky; Nuclear Phys. 39 (1962) 582.
6) B. Sprensen: Nuclear Phys. A97 (1967) 1; A119 (1968) 65; A142 (1970) 392, 411.
7) T. Kishimoto and T. Tamura: Nuclear Phys. A198 (1972) 98.



T. Tamiira and T. Kishimoto

K. Kumar: Nuclear Phys. 92 (1967) 653; Phys. Rev. Letters 26 (1971) 269; Chapter III
in The Electromagnetic Interaction, ed. W. D. Hamilton (North Holland Publishing
Company), to be published.
T. Tamura and T. Udagawa: Phys. Rev. 150 (1966) 783.
A. M. Kleinfeld et al.: Nuclear Phys. A158 (1970) 81; Z. Berant et at.: Phys. Rev. Letters
27(1971) 110.

Chairman: Because of the close connection between this paper by Dr. Tamura and the

following one by Dr. Sprensen, we would like to proceed to next talk and then after that we
shall have discussion on both of these papers.




