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a) The EO Transitions and Isotope Shifts

Due to fortuitous circumstances the transition rate of the O2 state in at 1.07 MeV

is dominated by the EO process to the ground state. This can be understood in terms of True's
wave functions which allow two neutron holes in the Pi/21 f5/2' P3/2> ̂ 7/2' '13/2 h9/2 orbits.
One finds that with these wave functions the B(E2, O2 ̂  2^) is strongly supressed. A slight
modification of his wave function will cause this transition branch to vanish.

The lifetime of the O2 state, as measured at University of Washington by Adelberger,
Tape and Burch is approximately 10"' seconds.

How can we get a finite EO rate? After all, the operator is ̂ protons rHO and hence should
vanish for neutron hole states. Why not assign an effective charge for the EO process just as
one often does for the E2 rates?

If we do this we can use True's wave functions. But, for the sake of simplicity, let us for

the moment consider two component wave functions. Everything we say will carry through
to the more general case. Thus

|0i) = ''IPi/2)o + ̂1^5/2)0 >

IO2) — ~^IPi/2)o + '''If5/2)0 •

The EO matrix element is then equal to

— 2oZl[e(p,/2)<Pl/2l''^IPl/2)""''(f5/2)<f5/2l''^|f5/2)] ■

We have purposely distinguished the effective charges of the Pi/2 and f5/2 orbits. The
reason for this is that with harmonic oscillator wave functions, the mean square radius is the
same for all orbits in a given major shell. Hence <Pi/2k^|Pi/2> = <f5/2l''^lf5/2)- With Wood-
Saxon wave functions this is no longer true, but we have checked that in this case. They are

sufficiently close to each other, so one cannot obtain any significant value for the EO matrix
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element. The simplest explanation of the strong EO rate is that the EO effective charge is state
dependant e(pi/2) # Kfj/j).

The effective charge can be obtained empirically from the isotope shifts. These are usually

expressed in terms of standard shifts, which correspond to the law R = \.2A^'^. For a stan
dard shift the change in mean square radius as one adds a nucleon to a closed shell nucleus

dr^ = 2,l5rl[(A -b 1)^/^ - A^'^] k IrUSA^'^ .

Experimenta ly the — ̂ °®Pb difference is f standard shift; the ^°®Pb — ̂ "'Pb
difference is about 1/2 standard shift. Thus the effective charge of a Pi/2 hole is

^(Pi/a) = 1/2 (2ro/5^i/3)/<Pi/2l'-^IPi/2> •

The value is 0.107 (the E2 effective charge is about 0.9). In ̂ °^Pb, the g9/2 effective charge is
0.18.

In order to get the strong EO rate in ^"^Pb we require that the effective charge for the

fj/z orbit is

e(f5/2) = 0.1 + 0.04 = 0.14

or = 0.1 - 0.04 = 0.06 .

We thus predict an isomeric shift in ̂ °^Pb of the first excited state (fs"}^) relative to the
Pf/i ground state.

Our state-dependent hypothesis requires experimental confirmation or denial. I hope

to make some quantitative theoretical calculations.

b) The Ml Operator

The magnetic moment operator is the sum of a one body part and a two body part coming
from meson exchange:

It = dil + 9s^ + Mill).

It is ironical that in the nucleus the two body operator behaves like a one body operator,
and the one body operator behaves like a one and two body operator. Let me explain.

Yamazaki and Nomura showed very clearly that, empirically, the meson exchange effects

can be taken into account by replacing g,hy g, ±0.1 for proton and neutron. But this is a one
body renormalization. There is at present no experimental information in large nuclei which
demands an explicit two body operator.

If we stay in a restricted shell model space, i.e. a single j shell, then to obtain good results

one must not only renormalize the one body part of the operator -I- g^s, but one must
introduce an explicit two body operator. This two body part can be calculated in terms of

configuration mixing as was done by Horie and Arima.

As an example, consider the A = 28 nuclei. I refer now to work of Goode and myself
published in March 1972 issue of Particles and Nuclei. The nuclei I wish to mention have
1, 2, 3, 5 and 7 proton holes relative to ®®Ni. They are ^'Co, ''^Fe, ®^Mn, and "^^Sc.

With particles of one kind in a given j shell we have the following theorem:

H can be replaced by gJ .
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Hence

a) All g factors in the shell are the same.

b) All Ml rates vanish.

To get varying g factors and finite rates we introduce the two body magnetic moment
operator Sfi{l2). It is convenient to note that this operator can be written as the product of
a two body scalar and the angular momentum operator; Sft(l2) = I7(I2)[/(1) + 7(2)]. This
is the most general form in a single j shell of protons. Even the meson operators must have
this simple form.

To learn about two body operator we consider the two hole system ^"^Fe. In the ff^j
configuration we have 7 = 0, 2, 4 and 6. The deviation of the g factors of ®^Fe from ̂ 'Co
ground state are given by

V = (j-^yu(i2xry 1(1 = 2,4,6).

The relevant diagram for calculating Sg', due to configuration mixing, i la Arima and
Horie, is shown. Note that the intermediate particle must be an f5/2 proton. This is reasonable
because the two body operator reflects the fact that as one deletes protons from '®Ni, less
protons can be excited ini.o the f5/2 orbit and so there should be less quenching.

But this tells us that the one pion exchange process is unimportant for this diagrams,
since two protons can only interchange a neutral pion. We must qualify the above remark
slightly. The diagram is proportional to (g, — g^. We should change g, from 1 to 1.1 k la
Yamazaki and Nomura. But, as was pointed out by Arima, g^ is much larger than gi, so the
effect of this is very small.

A two body operator may appear complicated but it leads to simple predictions.
1) The ground state magnetic moments of the odd nuclei (^'Co, ̂ ^Mn, ^'Sc)

should lie on a straight line.

2) The Ml rates for 3 holes (^^Mn) should be equal to the corresponding rates for 3
particles (^'V).

Unfortunately, the '^'Sc moment is not known, and ̂ 'Co is poorly measured. In fact,
I believe that for the ̂ ^Co case it is better, until and experiment is done, to use the moment
of ̂ ^Co and ̂ 'Co which are nearly the same. Mavromatis, Brown and myself calculated that
all 3 nuclei should have essentially the same moment.

Horie has discussed the ground state moments in a preceeding talk so I will be brief.
The moments ^^Mn and ®'Co do not lie on a straight line. Hence effects beyond the two
body are being seen. Goode and I did a matrix diagonalization in the space ff/j and ff/2
j' withy' = p3^2> ̂ 5/2 or Pi/2- This caused the '®Co moment to get closer to Schmidt and gave
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a small deviation from linearity. However, if we draw a line through the two well determined
moments and ̂ ^Mn, then this line has a much smaller slope than the average slope ob
tained in this calculations. From other contributions to this conference, this seems to be a
universal problem—the calculated slope is too steep.

Horie obtains a deviation from linearity by simply raising the energy of the T = 1 part
of the Ml Giant resonance ^ relative to the T = 0 part. This is much simpler than
our procedure. On the other hand we include the effect of P3/2 mixing. A detailed com
parison of the two approaches would be of interest.

A yet unsolved problem is the fact that the corresponding slope for the calcium isotopes,
or determined by "^'Ca and "^^Ca, is steeper than the slope for the A = 28 nuclei. This is at
first surprising because Qi — gfj is larger for protons than for neutrons. Perhaps there is more
deformed admixture in "^^Ca than in *^Ca.

We have also extended the calculation to M1 rates. Before discussing this, let us anticipate
that Ml rates will be very small due to fj^j admixture or two body moments. Suppose that
the two body moment U(12)J is such that <(;-Yc/(12)0'"Y> is independent of/(/ = 2, 4, 6).
Set it equal to a constant U. Then j = U(n — 1)/. In other words the two body op
erator has collapsed into the angular momentum operator times the number of particles minus
one.

In that case g factors will still vary but Ml rates will vanish. We note that with realistic
forces we do indeed obtain the result that U{\2) is nearly constant.

I noticed from preceeding reports on protons in the hg^a shell that U is nearly constant
in ̂ ^°Po. We therefore expect that the Ml rates in ̂ ^^At will be very small.

Since two body Ml rates are supressed we might expect a violation of the equality of Ml
rates for particle and holes. This has indeed been observed both by Bizetti et ul. from Italy
and Goodman and Donahue from Arizona. Although for the 5/2i 7/2i transition the Ml
rates are nearly equal in both nuclei, there is a factor of 10 or more difference for the 3/2j —►
5/2j transition. In the matrix diagonalization calculation of Goode and myself we are able
to explain this difference.

c) £2 Moments

Here I will be very brief. I report on a calculation of Richard Sharp and myself.
In calculating the effective charges of ^''O, using standard forces, even realistic ones we

obtained a state dependence. The effective charge for the quadrupole moment -» dj^j
is greater by about ^2 than the effective charge for the B(E2) (sj/j dj/j). But in Bohr and
Mottelson Vol. 1 the effective charges are analyzed to be nearly the same.

However, we find with newer density dependent interactions, such as Vautheir-Brink,
or Moszkowski-Ehlers, the two effective charges are nearly the same. We realize, though, that
great experimental precision is required to distinguish between state dependence and state
independence.

Discussion

S. Fallieros (Brown Univ.): In your abstract, you mention something about negative
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monopole effective charges. Can you help us understand this peculiarity?
Zamick: The point is that, with an ordinary force like a ̂ -force or a Kuo-Brown force

etc., if we add a neutron to ̂ o®Pb, we would predict that would have a smaller charge
radius than ̂ °®Pb. That means a negative effective charge. But that is the wrong answer; it
doesn't agree with experiment. We need a density dependent force (as shown first by Barrett,
I think) in order to get positive isotope shifts.

B. SoRENSEN (Copenhagen): I don't understand why your eeff(EO) and eeff(E2) in Pb
differ so much. Both involve matrix elements of In a calculation of EO and E2 transitions
in rate earth nuclei, Ascuitto and I found that the same eeff(EO) = eeff(E2)=i0.3 works for all
observed states.

Zamick: Perhaps it is because I am close to a closed shell. It could be that the effective
EO charge increases as you go to the deformed nuclei. Perhaps we are misunderstanding each
other's definition.

I. Hamamoto (Miinchen): Could you say something about what kind of effect your
renormalization has on the form factor of states (for example the form factor which one can
obtain from electron scattering), especially when you introduce the density-dependent inter
action?

Zamick: No, we haven't looked into this question.




