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Recent experimental progress is very rapid, and precision of experimental data becomes
higher and higher. In this connection, we have to calculate the magnetic moment with a
higher accuracy. One of these corrections is a group called exchange currents. They consist
of the meson exchange currents, isobar effects, and relativistic corrections. These have been
studied by many authors to different extents. In particular, the relativistic corrections were
examined by Margenau and Caldirola thirty years ago^'^' for a restricted case.

We report about the treatment of the relativistic corrections to the nuclear magnetic mo
ment as well as to the Gamow-Teller matrix element for beta decay in the general way.

The motion of a nucleon inside the nucleus can be described by the Dirac equation with
the effective potential V(r) between nucleon and the residual nucleus.

[ofp + pM+ Vir)] ̂ PCr) = £*P(»-) .

If, for simplicity, the effective potential is assumed to be the fourth component of the vector,
the single nucleon wave function is given by a four-component spinor

,/=7+ 1/2,7 =7+ 1/2,

where Xj.i is angular momentum wave function of two-component, and the subscripts / and 7
represent the orbital and total angular momenta of a single particle, respectively. The nor
malization of the wave function is taken as

r^dr[gj.i(r) + fj.i(r)] = 1.
J 0

The small component represents the effect of relativistic motion of the nucleon. With
this wave function we calculate the magnetic moment of a single particle state 7". Operator of
magnetic moment p, is given by the equation

/2(r) = Myor x a + yja ,

where y^ and y^ are the Dirac and anomalous magnetic moments of the nucleon, respectively.
The result is as follows:

p = fi^ + 5n ,

..._ r(2; + i)\. 1-[iTTT'" + (7Tij4'
p, is the Schmidt value, dp is the relativistic correction to nuclear magnetic moment, e is given



by the integral

H. Ohtsubo, M. Sano, and M. Morifa

To estimate the correction 8n, we take simply the square well for the effective potential. The
well depth is adjusted so as to give the experimental separation energy of the nucleon. Per
forming numerical calculations, we have the magnitude of £ from 0.01 to 0.02, which is almost
independent of the nuclear states. It should be noticed that the correction depends upon j,
but not /, so that we cannot express the correction in terms of the effective ̂ -factors, and
g|. The numerical values of the correction Sg for various nuclei are given in the table below.
For example, the corrections are, in units of nuclear magneton, -.26 for nitrogen 15, +.013
for oxygen 15, +.009 for oxygen 17, and —.093 for fluorine 17, respectively. In the region
of lead 208, the correction for proton orbit reaches up to -0.2, while it remains to be small
for neutron orbit. As is expected, the shifts from the Schmidt value due to the correction are
downwards for proton, and upwards for neutron. It is small for higher angular momentum
j for neutron, but it is large for proton.

A similar correction to the Gamow-Teller matrix element should be considered in the
case of beta decay. The Gamow-Teller matrix element between mirror nuclei is given ar

'...I'
The first term in the right-hand side of the first equation represents the usual Gamow-Teller
matrix element, and the second the correction. The correction is, in contrast to the magnetic
moment, dependent upon both j and /. Even in the high angular momentum state, the cor
rection remains to be finite, as long as the integral £ is almost independent of the nuclear states.
Here we give the numerical values of our corrections for typical examples of the beta decay
between mirror nuclei. We can see from the above results that we cannot neglect the relativi-
stic corrections for the magnetic moment and the Gamow-Teller matrix element of beta decay.

To see more clearly what we have done, we take another approach to the relativistic cor
rections. We diagonalize the Hamiltonian H under unitary transformation and transform a
four-component wave function *P into a two-component wave function d), which we usually
regard as the non-relativistic wave function. The new Hamiltonian H and the wave function
d> are related to the old ones by unitary operator S.

/TT* = Hd) = £0 ,

H = SHSj d) = 5«P .

The expectation value of any operator 3 is given by
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<*F, S^> = <$, SHStiD)

= {4,,

That is, the expectation value is represented by the two-component wave function and the
effective operator H^ff. The procedure to obtain the effective operator is known by the name

of Foldy transformation.

H — at • p -1- pM 4" -f- Q„

H = fiM + n,+ ̂iS(a • p + ny Qe: Even operator,

~ FlTTlt® • p + n„,[(x - p + n„, file]-]- + ..., fil„: Odd operator,8M

The interaction part of the total Hamiltonian H usually involves the even and odd operators

Qe and Qo. These operators may include the elctromagnetic or weak interaction, in addition

to the strong interaction. The relativistic correction in our study arises from the fourth term

in the right-hand side of the new Hamiltonian. This term consists of the velocity-dependent

one-body operators and the operators related to the nuclear forces. In principle, the above

two approaches are equivalent to each other. For the purpose of the numerical calculations

of the magnetic moment or the Gamow-Teller matrix element, we must obtain the effective

operator by a complicated procedure in the second approach. In the first approach, we

can perform the calculation if we know the relativistic wave function. Therefore, the first

approach is more suitable for the present purpose.

The assumption of the scalar potential pV{r) in the Dirac equation was also investigated.

Table I. ®'Sr, etc., should read the region of "Sr, etc.

Proton orbit Neutron orbit

11 lP3/2 -0.050 A = 35 ld3/2 -0.049 A = n lP3/2 -1-0.010 A =35 ld3/2 +0.010

13 lPl/2 -0.024 37 ld3/2 -0.045 13 lPl/2 +0.012 31 ld3/2 +0.009

15 lPl/2 -0.026 39 ld3/2 -0.046 15 lPl/2 +0.013 39 ld3/2 +0.009

17 ld5/2 -0.093 41 lf7/2 -0.130 17 ld5/2 +0.009 41 lf7/2 +0.007

19 2Si/2 -0.047 43 lf7/2 -0.131 19 2Si/2 +0.024 43 lf7/2 +0.007

21 ld3/2 -0.059 sssr 2Pl/2 -0.032 21 ld3/2 +0.011 "■'Sn 3Si/2 +0.021
23 ld3/2 -0.061 '«Sr 2P3/2 -0.047 23 ld3/2 +0.012 "''Sn 2d3/2 +0.012
25 Id5/2 -0.080 8»Sr lg9/2 -0.148 25 ld5/2 +0.008 '"Sn lhil/2 +0.005
27 ld5/2 -0.083 208pb 169/2 -0.115 27 ld5/2 +0.008 208pb 3Pl/2 +0.020
29 2Si/2 -0.036 208pb lil3/2 -0.213 29 2Si/2 +0.018 208pb lil3/2 +0.004
31 2Si/2 -0.038 31 2Si/2 +0.019 208pb 2f5/2 +0.008
33 ld3/2 -0.047 33 ld3/2 +0.009 Pb 2g9/2 +0.007
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Discussion

H. Miyazawa (Univ. of Tokyo): Are there any big differences in the results for the
scalar and vector potentials? To get a large spin-orbit coupling the vector potential is favorable.

Ohtsubo: The numerical table gives the relativistic corrections for the vector potential.
For the scalar potential, the numerical values are almost the same for the neutron, but may
change sign and magnitude for the proton.

G. E. Brown (Stony Brook): I would like to amplify these remarks. There is a large
assumption made, that a relativistic many-body problem is simplified to a single-particle
problem with a central scalar potential in a sort of a Hartree-Fock description. Now, that is
probably all right in calculating the Pauli part of the moment, because in that case one just
gets the Lorentz contraction to the moment; the motion simply contracts the moment. How
ever, Breit showed in the late 1940's in the case of the deuteron that the reduction of moment
coming from the a x r is extremely model dependent and depends upon the interaction between
the particles. Therefore, for the Dirac moment I don't think one can trust your results.

Ohtsubo: As was pointed out by Prof. Brown, the Dirac moment is very dependent
upon the nuclear forces. We should do the complete calculation in the following way. First,
we calculated a self-consistent wave function with realistic nuclear forces, e.g. a one-boson-
exchange potential, and then estimate the correction. Then there would be no ambiguity.
Dr. Yazaki has made a similar calculation. In the case of the neutron the correction of the
magnetic moment may not be altered so much, because the correction depends on the pro
bability of small components involved in the wave function. In the case of the Gamow-Teller
matrix elements, the situation is the same as for the neutron.

D. H. Wilkinson (Oxford Univ.): How did you determine the radius which you used?
Ohtsubo: We used the empirical radius.
Wilkinson: I believe that the choice of radius for your square well may be quite

important. I do not think that you should choose the radius to be equal to the size of the
nucleus but rather of such a size that you fit not only the binding energy of the last nucleon
but also the r.m.s. size of its orbital as given, for example, by a "realistic" Saxon-Woods
potential that reproduces the overall charge distribution. This would give to the last nucleon
a significantly more extended wave function, particularly in the lighter nuclei, and therefore,
presumably, a smaller relativistic correction than you have found.

Ohtsubo: The result depends, in principle, on the radius. But, the effect is not too
significant.




