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In muonic hyperfine spectra recently observed in the rare earth and actinide regions it
is possible to study the nuclear charge deformation by analyzing the mixing of the muonic
states with the low-lying nuclear rotational states through the electromagnetic interaction.'"^'
From such studies one can obtain not only a more reasonable form of the nuclear charge
distribution but also other information about nuclear structure such as the intrinsic quadrupole
moment. In previous analyses of muonic hyperfine spectra only the nuclear quadrupole de
formation has been considered and higher multipole interactions of the muon with the nucleus
have not been taken into account. However, higher order components in the nuclear defor
mation have now been examined in recent experiments on a scattering and Coulomb excita
tion.^""" In fact, it is expected that for some nuclei the effect of the deformation or the
electric hexadecapole (E4) interaction on muonic spectra may not always be negligible in the
analysis of precise measurements of the muonic X-rays.

In this paper we consider the contribution of the 1^4 deformation to the transition matrix
elements of the muon-nucleus system and re-evaluate the intrinsic quadrupole moment for
certain nuclei, such as '"Sm and for which we can expect a large deformation
parameter

In our analysis a modified Fermi charge distribution

Pir) = N[1 -p exp{[/- - c(l + J,PtY,oie))]/a}]-' (1)
I

is generally assumed, where the half-radius c is modified by an angular dependence, a is the
surface thickness parameter, and Pi the electric 2'-pole deformation parameter, where all the
parameters are settled with the corrections of quantum-electrodynamics and nuclear polariza
tions for each state. We can expand p(r) into multipole terms:

P(r) = PoiO + i;Pi('-)r,o(0) . (2)
I

The electric multipole interaction of the muon-nucleus system can be written as follows:

^1=1^ eQifiir)Piicos J), (3)

Pi(r'y
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where g, is the intrinsic El moment, and / = 2 or 4 indicates the quadrupole or hexadecapole
moment, respectively. The angle gives the position of the muon with respect to the nuclear
symmetry axis and f,{r) is the form factor of the El interaction.

The unperturbed eigenfunction of the total angular momentum F is denoted by

\IK, tiKj] FM} = X jm\FM)\IMiKy\nKjmy , (6)
m

where \nKjmy is an eigenstate of the muon which can be found numerically for the monopole
density po(r). In our calculation poir) is replaced by the Fermi-type distribution with known
effective parameters.®' The nuclear eigenfunction \IMKy is given by

\IMKy = ^(6, (/), ip) + (- (P, «A)}, (7)
4n\j 1 + Sf^o

for even-even nuclei, where 0, <j) and i/' are the Eulerian angles of the nuclear axis. The matrix
element of the muon-nucleus multipole interaction is obtained by use of the basis function (6):

(^rK'n'K'j'FM\Hi\IKnKjFMy

" - + 1)(2/+ 1)(2/ + l)(2y+ 1)

Fj'I'W f U\
>> ;/j l-ioi ®

J \ i\

The energy levels and the eigenstates of the system are obtained by diagonalizing the ma
trix of the total Hamiltonian with given n, I and F. The eigenstates are then admixtures of
unperturbed states, where the multipole interaction in muonic states above the 3d states is not
considered. The muonic hyperfine spectrum can be deduced from these energy levels together
with the relative intensities of all possible electric dipole transitions. On the other hand, the
quantities depending on the nuclear charge density, as obtained from observed hyperfine
spectra, are the unperturbed muonic binding energies and the E2 interaction energies of the
muonic 2p and 3d states denoted by

-^Qi<nK'\fAr)\nKy (9)

for the case without deformation. If the Y^. deformation is included, the E4 interaction
energy

= -^e4<3^/'l/4('-)|3d>

along with the kinematical factor would be added to the E2 interaction energy in the ma
trix element for the 3d state. In addition the matrix elements also depend on through the
nuclear charge density.

Thus we can discuss the influence of the T4 deformation in comparing theoretical with
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Table I. Values of the intrinsic quadrupole moment (in barns).*

5.78

(0.538; 0.296)
5.84

(0.540; 0.278)
5.85 ± 0.13

6.27

(0.493; 0.237)

6.16

(0.480; 0.251)

6.21 ± 0.06

* The former and renormalized values of a(fm) and P2 are written in parentheses; the other charge
parameter c is invariant under renormalization.

observed values of the charge distributions and the E2 moments obtained from muonic

spectra.'^' For some fixed values of the unperturbed energy of the muon and of the nuclear
E2 moment, the effect changes the values of ct^2p and effectively by —1.3 per cent and
about 7 per cent for '®^Sm, and +2.4 per cent and about 5 per cent for if values of

are assumed to be +0.09®^ and —0.08,®^ respectively. In accordance with these changes
the charge distribution or the intrinsic E2 moment can be re-evaluated by renormalizing
the matrix elements of the 2p and 3d states. The results are shown in Table I, where the

former values'^* of and the renormalized ones 22'^ for the E2 moment are compared
with values of <22^^ obtained from Coulomb excitation experiments which are model inde
pendent. When the deformation is taken into account it is noted that the value of

the E2 moment increases or decreases according to the sign of

In conclusion we have found that corrections considered in this paper are of the order
of magnitude of the experimental errors. However, the analysis of the F4 deformation from
the muonic point of view might be more in line with the accuracy obtainable in muonic and
other model independent experiments.
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Discussion

H. J. Leisi (ETH, Zurich): I would like to ask why the effect in is smaller than
the effect in asa'. I would expect it to be the other way around.

Narumi : The percentage deviation from in aaa is larger than that in a2p, but the
absolute value of is one order of magnitude smaller than that of aiV-




