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Adiabatic and Non-Adiabatic Limits for Multi-Phonon
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The interaction strength between free and deep states is propor
tional to the free-electron bandwidth 2B at lattice configurations
where free states cross with the deep state. A unified expression
of the multi-phonon capture rate is given for a center with only
one bound state. The pre-exponential factor of the emission rate
related with the capture rate by detailed balancing approaches an
average phonon frequency f^ in the adiabatic (large B) limit while
it is much smaller than f^ in the non-adiabatic (small B) limit.

I. Introduction

Recently free-electron capture by deep centers in semiconductors has attracted
much attention both from laser devices and from solid state physics[1]. it gives a
typical example of relaxation from free continuous states to a deep bound state

^ large lattice distortion around it. However no reliable theory has been pre
sented so far on the multi-phonon capture rate. The present work is devoted to give
such a theory for a center with only one bound state under the condition that the
electron—phonon interaction can be treated semiclassically at high temperatures.

We know two limits for a transition between two localized electronic states which
occurs around a lattice configuration where the adiabatic potential energies associ
ated with these states cross with each other in the course of thermal lattice vibra
tions [2]. In the non-adiabatic limit the transfer integral between the two states
is so small that they are not mixed well quantum-mechanically within the duration
time of a crossing event. In the adiabatic limit the opposite is realized. The
^^^usition rate is much different between these two limits. In the present problem
too, the situation is similar as shown in Fig.(1) which shows the adiabatic poten-
tial energies associated with the deep state (a sigle line) and with the free states
(multiple lines) along the interaction-mode (or reaction) co-ordinate Q [3]. Here
the deep state is lower by energy E than the lowest edge, with energy zero, of the
free states, while it crosses with the free states above the activation energy E
for carrier capture. V , A, and S represent respectively the energy of the deep^
state at the unrelaxed lattice configuration, the energy difference between the deep
and the free states at the relaxed configuration Q , and the lattice distortion en
ergy at . Case (I) on the left half is met usually, but Case (H) on the right
half seems realized by a center giving rise to the persistent photoconductivity[4].
Polaron and exciton self-trapping[3] can be classified into Case (H) . it will be
shown later that the interaction between the deep and the free states at the cros
sing configurations is stronger for a wider bandwidth of the free states. Most
theories[St 7] on the capture rate presented so far adopt the second-order pertur
bation in the interaction strength, which is applicable only in the non-adiabatic
(small bandwidth) limit. However it is '
an open problem whether the perturbational

approach is applicable or not to most

semiconductors whose bandwidth is very
wide of the order of several electron
volts. If not, we must take into account

re-emission of once captured carriers
into free states. The effect was first

taken into account by Henry and Lang[8],
but their treatment is too approximated
to be acceptable. Moreover they calcu
lated the rate of initial capture before

Qi
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Fig.(1)
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re-emission as if the free-electron continuous states were a sigle level by using
the theories[2,9,10] on a transition between two localized electronic states. The
situation is the same also in ref.(7). Besides these, the matrix element to induce

capture is quite different depending on different authors.
The emission rate from the relaxed deep state is related with the capture rate

W„ by detailed balancing[6,8], as
n, , m*k T 3-2

W =—W exp(BE.), with n,j, = - E exp(-3E ) = ( — ) , (1.1)
c n,p ^ ^ •'• Vk ^ 27rR

and B = 1/kgT, where n^j, V, and Ej^ E fi^|k|^/2m* represent respectively the deep-
center concentration, the crystal volume, and the energy of a free electron with
effective mass m* and momentum k. The quantity n^, represents the effective concen
tration of free-electron states available at T. The emission rate should have a

special form in the adiabatic (large bandwidth) limit: Here the deep state is mixed
well with the free states at the crossing configurations shown in Fig.(1), and
hence an electron activated once to the crossing region from the relaxed deep state
is surely emitted to free states. Then we should have in the adiabatic limit

Wg = f^ exp[-6 (E^ +E^) ], (1.2)

where f^ called the attempt frequency is a constant independent of both the temper
ature and the bandwidth and is given by an average frequency of phonons contributing
to the interaction mode. A reliable theory should correctly describe the adiabatic
limit mentioned above when the bandwidth is increased enough.

H. Interaction Strength
It is reasonable to assume that electrons interact strongly with phonons only in

the deep state localized well. Without a deep center we have free electrons and
phonons, described respectively by Hamiltonians Hp and Hj^ , and no interaction be
tween them. A deep center gives rise to a localized potential which is written as
V^(r) with the electron co-ordinate r in the undistorted lattice and as Vjj(r)-Qg^(r)
in a lattice distorted by Q around the deep center. Q defines the interaction mode
and can be expressed by a linear combination of various normal-mode co-ordinates, as

with ̂  V ~ ̂ 1, ' where b represents the annihilation operator of a phonon with energy
and momentum k. For kgT larger than the average phonon energy, Q can be regard

ed as a c-number fluctuating thermally. Then the Hamiltonian for an electron at a
fixed Q is given by H(Q) = Hp + V^(r) -Qg3(r). When the deep state is occupied, the
surrounding lattice is distorted by Qj as shown in Fig.(1). The deep-state wave
function |d> is defined as diagonalizing H(Q^), as H(Qjj) = 2 E^ a^ a^ - A a^ a^ , where
a^ and a^ represent respectively the annihilation operator of an electron occupying
the deep state and the f-th delocalized state with energy E^ (= 0) whose wave func
tion is denoted by |f>. We assume that free electrons before capture can be regard
ed as having wave functions { | f> }. To be rigorous, we must determine the free-
state wave functions by diagonalizing H(Q=0), but this approximation is good for
Ef ̂  kgT so long as |v^| and A in Fig. (1) are lx>th much larger than kgT. We neglect
<f| g,j(r) |f'> which is of the order of the inverse of the total number N of unit
cells in the crystal, and the interaction mode is chosen such that <d| g^(r) |d> = 1.
Thus we get

Hq ̂2' ~ i ®f ^f ~ Q )r "0 S "f "f '^f ^ * "d « ' ^

H(Q) = Ho(Q) + H'(Q), with a + a + t * a + a )
I H (Q) - 1 I tj^^ a^ a^ + t^jj a^ ) ,

where - A and t^^ = ( - Q) <f | g^ (r) |d> ( «: 1/v^ ) . The adiabatic potentials
for the f-th free state and the deep state are written as

Vf(Q) = Ef + Q^/(4S) and V^(Q) = (Q-2S)^/(4S) - E^ , (2.3)
with S = ̂  I Vj^l ' Q(j = 2S and E^ = S - . They have been shown in Fig. (1) .

V^(Q) ̂ SrEf = 0 crosses with (Q) at Q = . Then free-electron capture takes
place at with the activation energy E^ given by V,^/4S. We introduce here a
spectral function for the interaction strength between fee deep and the free states

^(E) = E |tf^P 6(E-Ef). (2.4)
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From (2.2) we can get a relation

<d| H' (Q) [ z - Hg(Q) ] ,-l -1■ H' (Q) |d> = z + Q - - <d I [ z - H (Q) V |d>

for z = E + 16 with 6 =+0, Hamiltonian H(Q) can be devided also into H,-
(2.5)

plus the
scattering potential V^(r) - Q.g^(r) of the deep center, and the potential is weak
at Q since H(Q) has no bound state there or at most a very shallow one. Then,
we can neglect all matrix elements of the potential except A(Q) ̂  <d|V,(r)-Qg (r)|d>,
and we get _

<d| [z-H(Q) ]"^ |d> = [Gp(z)~^ - A(Q) ]"^, (2,6)
at Q , with Gp(z) = <d| [ z - Hp ] |d>. Now we assume that a spectral function
p(E) = <d| 6(E-Hp)|d> is written as 2/ (TTB^)/e (2B-E) for 0 < E < 2B and zero otherwise
by using the half width B of the free-electron band. It satisfies correctly /p(E)dE
= 1. Then we get

'  ' ̂ " (2.7),(z) = /dE" P(E")/(Z-E') = 2 [z + /(z-B)^-B^

and the imaginary part of (2.5) gives at Q 'v

C(E) = /E (2B - E) , for 0 < E < 2B, and zero
2t\ oth

which is about for 0 < E ̂  kgT
erwise, (2,8)

^  ( « 2B ). Function ^(E) thus determined is
independent of Q so long as Q 'v- . The average value J of the interaction strength
between the deep and the free states at Q 'v is determined by = /?(E) e~P^^ /
(Vn^) , which is about iTfiVB/m*^ /V, _with n^ defined by (1.1). Since (N/V)^^V2m*
is of the order of 2B, we see that J has a magnitude of the order of B/i^.

m. Capture and Emission Rates

Capture of a free electron by the deep center is fulfiled when an electron cap
tured once remains in the deep state without suffering re-emission into free states.
For initial capture from an individual free state we can use the theories[2,9,10] on
the transition rate between two electronic states in the non-adiabatic limit, since
the individual interaction strength is infinitesimal. Then the initial capture
rate from the f-th free state is given by.

(Vd - E) 2
W(E R(E with R(E)

TT

] (3-) = t.
'  '"f

£),
d

Here the activation energy
skaT

exp [ -
4SkgT .1)

/4S, which is different for different free states

Vd-Ef
as apparent also in Fig.(l), equals the lattice distortion energy at Q
where V£(Q) and V^(Q) in (2.3) cross with each other. After initial capture tfie
interaction-mode co-ordinate Q evolves along a trace shown in Fig.(2) which enlarges
the crossing region in Fig.(1). The time evolution of Q is classified into two
types shown on the upper and the lower halves for each of Case (I) and Case (H) ,
When i = 1 or 2, initial capture occurs at time t^ (Ep), and subsequently at time
( i'-fEj) the adiabatic potential energy V^(Q) becomes lower than (Q) for E-= 0

the course of the mi— .1. /n \
ti _  iwer than (Q) for E^ = 0

interval At^(E^)

 In
time evolution of Q. ~Time tj^ (E^) is earlier than t2 (E^) . Time

(E^) - t^ (E^) during which the deep state is embeded in the free
state continuum is longer for i = 1 in Case (I) and for
i=2 in Case (H) than for i = 2 in Case (I) and for i = l
in Case (n) respectively. Moreover, along these longer-
Atj^ (E^) traces, the time derivative of Q (say the ve-
city), which equals the time derivative of Vp,(Q) -
Vd(Q) for any f, passes through zero once during
Ati (E_). Therefore we see from the Landau-Zener for
mula [11] that re-emission of once-captured electrons
occurs violently during Atj^(E^) for i = 1 in Case (I)
and for i = 2 in Case (H), and hence these types of
traces of Q are excluded to calculate the capture rate.
We assume that the velocity is nearly constant with a
magnitude v during At^(Ej) for i= 2 in Case (I) and
for i = 1 in Case (H) . Then the Landau-Zener formula
gives the probability that an electron captured once
from the f-th free state is not re-^mitted to free states, as

P(E£,v) = jexp[-2Tr E |tj,^| V^iv ], or

Case (I) Case(n)

W ti(V t,'(v

Pig(Ef,<Ef)
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P(Ej,v) = y exp [ - 277 5 (E^)/fiv ] , with ^(E) C (E') dE ■ (3.2)

The capture rate is the thermal average of W(E^) P (E^r , v) with respect to E^ and v.
[We

which

introduce

is written

the

as ...

value of is given^by

velocity operator

V]^* (b- - h .t-b_T)

2 m'

CO

/i
of the interaction

by using (2.1)
mode by V =

Then the
Hl

thermal

QWf^,
average

at high temperatures, where to defined by

is an average angular frequency of phonons contributing to the interaction mode.
Then the capture rate is given by

(3

c

where

W ^d
n.

 = — |dEC(E) e~^^R(E) <P(E,v)>^ , with < dv ' exp[-

•>^ represents the thermal
deep centers is taken into account.

u/TTSk^T
average in v and a finite conpentration
The exponential factor in e■ P^R(E) can

.4)

 be
of

ap-

E^kgT

We
with

= n 75:^ exp [ - 6 ( E^ + E^ ) ]

proximated by exp [ - 3eA/2S - 3e^ ] for
from (1.1) and (3.4) is written as

m

277
^3/2 ^ EA , ̂ , 277 ?(E)

' dE 5(E) exp[- ] < exp[ ^
(2.8) , 71 is given by

,  r ^ , ,A sinh^29 , , sinh3071 = tanh36 [ tanh39 ;;— ln( 5-
3 tanh0 cosh 39 4 sinh

« A.

fiaj/skgT j 0
When 5(E) is approximated by

with

,

Then the emission rate derived

>v

(3.5)

(3.6)

 cosh49-2cosh20 r Ti , „_.._i,tanh9^ n

/3 cosh 30 ^ /3

(2/3/9) sinh39 = 4v^SkBT/(3^7^'/^) E y
(3.7)

(3.8)

The Y dependence of r| is shown in Fig. (3) , where in the limiting cases
377

n - "T y ' y « 1 r4  ̂ ' for Y » 1 • (3.9)and n - 1 9/3 'Y ̂  '
In the non-adiabatic limit for y « 1, we can get r| i 37TY/4 also from (3.6) di

rectly by an approximation exp[-2775(E)/fiv ] 1' 1, that is, by the second-order per
turbation in the interaction Hamiltonian H' (Q) . In this limit 7) should be much
smaller than unity, and hence the pre-exponential factor of the emission rate Wg of
(3.5) should be much smaller than the average phonon frequency. In the adiabatic
limit for Y 1 we can get 71 ^ 1 also from (3.6) directly by an approximation
exp[-EA/(2SkBT) ] 0; 1 and a relation dC(E)/dE = 5(E) only. Therefore the result does
not depend on the approximation (2.8) for 5(E). In this limit (3.5) tends to (1,2)
and the attempt frequency f^ is given by (I)/277 with 5) determined by (3,3) .

The capture cross section O has traditionally been used by many experimentalists
instead of the capture rate. In the adiabatic limit we should have O = O)/(277n^v^) x
exp(-3Ej^) by using the thermal velocity of free electrons v^. = /3kgT/m* , where the
the pre-exponential factor is about 4 x 10
cm^ at about room temperature when m* is about
half the bare electron mass and ftu is about

100 cm
-1 The pre-exponential factors of the

order of 10~^^ t lo"'** cm^ of O have often
been observed at about room temperature[8].
We see from Fig.(3) that these values are lo

cated intermediate between those which should

be obtained in the non-adiabatic and the adia

batic limits. We can get (3.6) also by summing ^
up all the dominant terms in the perturba-

tional expansion, as will be shown elsewhere. Fig.(3)
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