
Proc. 15th Int. Conf. Physics of Semiconductors, Kyoto, 1980

J. Phys. Soc. Japan 49(1980) Suppl. A p. 861-864

PINNING OF FLUCTUATING CHARGE-DENSITY WAVES

IN QUASI-ONE-DIMENSIONAL CONDUCTORS

H.J. Schulz"*"

Laboratoire de Physique des Solides
UniversitS Paris-Sud

91405 Orsay, France

It is shown that the contribution of CDW fluctuations
to the conductivity of quasi-one-dimensional metals
is drastically reduced if the system is commensurate.
The effect of commensurability on the single-electron
conductivity is much smaller. Thus, commensurability
pinning of fluctuation conductivity is a satisfying
explanation of recent experimental results on
organic conductors.

I. Introduction

Quasi-one-dimensional metals, i.e. systems of weakly coupled
metallic chains, show at some critical temperature T- a phase trans
ition into a charge-density wave (CDW) state [1], as first predicted
by FrOhlich [2] and Peierls [3]. One of the most interesting points
in the study of these systems is the possibility of dc conductivity
by rigid translations of the CDW [2,4]. Below Tp this mechanism is
suppressed by impurity pinning or coupling between oppositely charged
chains [4,5]. However, above T- there exist fluctuations into the CDW
state, and due to the finite correlation length the pinning mecha
nisms are expected to be far less effective than in the long-range
ordered state below Tp. The existence of a fluctuation contribution
to the dc conductivity of quasi-one-dimensional conductors [6,7] has
been a controversial subject [8,9]. Recent experiments [10] show a
considerable drop of the metallic conductivity of TTF-TCNQ when the
CDW becomes commensurate under pressure, i.e. when the wavelength of
the CDW is (nearly) three times the lattice constant. This drop has
been interpreted as commensurability pinning of fluctuation conducti
vity, i.e. the fluctuating CDW locks into the lattice. Here we pre
sent a theoretical calculation of fluctuation conductivity at
commensurability.

Above Tp there is a wide temperature range where fluctuations can
be observed by X-ray scattering, for example in TTF-TCNQ (T =53K) up
to 200K [1,11,12]. Over most of this temperature range (T>6uK) adja
cent chains are uncorrelated, so that the fluctuations can be treated
in a strictly one-dimensional model. Further we limit ourselves here
to the lowest order fluctuation effects. The contribution of CDW
fluctuations to the conductivity is to lowest order given by the
Azlamazov-Larkin (AL) diagram [13-15]. Therefore in the following
section we investigate the influence of commensurability on the AL
diagram. The fluctuations affect the conductivity also by single-
electron scattering [13,14,16], The influence of commensurability on
this mechanism is discussed in the last section.
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II. Fluctuation Conductivity in a Commensurate System

In a nearly commensurate situation, the typical wavenumber 2k of
the CDW is given by 2k =Q+5, where for the experimentally interesting
case of third order commensurability Q is one third of the reciprocal
lattice wavenumber and 5 denotes deviations from exact commensurabi
lity. Due to umklapp processes, an additional term of the form

(x)e~^^'^''] dx (1)

where (j) is the CDW order parameter, appears in the free energy [17].
This term clearly depends on the phase of the order parameter and
thus breaks the translational invariance of an incommensurate (IC)
system. Defining a modified order parameter \j;=(t)exp (i6x) an equation
of motion for the fluctuation current J can be derived [15]:

U + YJ = fiaV j [<1^ =^ (x) - (x) ] dx (2)

where l/y is the lifetime of the fluctuations and a is a constant
depending on the electronic properties of the system. Equation (2)
shows that even for infinite lifetime the current is not a conserved

quantity, in contrast to the IC case. Therefore drastic deviations
from the IC situation are to be expected.

We now consider the effect of G on the AL-diagram. First, G^^^
leads to a self-energy renormalizatlon a)^-»-w^-9TV^/2(ii)^C of the order
parameter propagator by third order umklapp processes[15]. is the
minimum of the Kohn anomaly and C the correlation length. As long as
V is not too large there is only a small change in the conductivity.
However, G leads also to an interaction between the two parallel
propagatorS°5!n the AL-diagram, mediated by another propagator. Argu
ments similar to those of Holstein [18] show that the most important
contribution comes from ladder diagrams, as each rung gives (for
certain values of the frequency arguments) a factor V^/(yu^)^ . For
long-lived fluctuations this may be very large, so that the whole
ladder series has to be summed up^ Then one of the two triangular
electronic vertices (denoted by F ) in the AL-diagram has to be re
placed the ladder sum F . A detai?ed investigation [19] shows Jhat
diagrams with an odd number of rungs are negligible, so that F is
given in diagrammatic representation by
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ly, k.X and q are wavenumbers, and 1, m. m», and n are the' 2'
indices of the corresponding Matsubara frequencies.

In a previous paper [15] eq.(3) was solved using a rather crude
approximation. In the limit of long-lived fluctuations a more
accurate solution has been found [19]. The resulting conductivity is:

a^T

4irYco^
i+ti[i+5^ (q/2+5) ̂]~^|-1
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and A is a momentum cutoff of the order of 5(2Tp) . The analytic
evaluation of the integral in eq.{4a) leads to quite complicated ex
pressions which are not reproduced here. Instead we discuss the main
results. First, we note that the effect of commensurability is deter
mined by n. Apart from V this factor also depends on the ratio u /y
and may thus be quite large for long-lived fluctuations even for°a
relatively weak commensurability potential. Physically this means
that the fluctuations have to be sufficiently long-lived so as to
allow the commensurability force to have an appreciable effect. In
Fig. (1) the conductivity resulting from eq.(4a) is shown for differ
ent values of g in dependence on ^6. This illustration shows that in

Op(T) Uu(2Tp)/y=10

6=0
0^(2Tp)

11=1 11=0

0.5

ii(2T )=aoyg;o

Fig.l The fluctuation.conductivity
in units of the value 0^,"" in the
incommensurate case

Fig.2 Temperature dependence of 0
for differnt values of ri(2Tp), r)=0
is the IC case

an exactly commensurate system (6=0) is strongly reduced. For de
viations from commensurability 0„ increases and for ?6>1, when the
CDW can no more lock into the lattice, goeS rapidly to its IC value.

A picture of the temperature dependence of 0_ can be obtained
assuming (T)=u'^(T/T -1). The resulting temperature dependence
(Fig.(2)) shows that the conductivity vanishes in the commensurate
case for T->-Tp, contrary to the IC case (n=0) . We note, however, that
our calculation treats fluctuations in lowest order and therefore
becomes invalid near Tp. The qualitative behaviour shown in Fig, (2),
especially the strong reduction of the fluctuation conductivity with
respect to the IC case, is however expected to be valid even near Tp.

III. Discussion

We have shown that the contribution of CDW fluctuations to the dc
conductivity of a quasi-one-dimensional metal is strongly reduced by
commensurability. Apart from the collective mechanism as described by
the AL-diagram fluctuations also scatter electrons individually,
thereby decreasing the single electron conductivity. It has been
shown [13,14,16] that this effect is proportional to the mean square
amplitude of the fluctuations, i.e. to 1/w . Therefore commensurabi
lity affects the single particle conductivity via the above mentioned
self-energy correction of u . This effect is independent of y, so
that for the effect of commensurability on the collective part
of the conductivity (as represented by the AL-diagram) is much larger
than on the single electron contribution.

Quantitative values of the parameters of our theory for TTF-TCNQ
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are difficult to obtain due to the lack of experimental results
on the precursor effects at high pressure. However, an order of
magnitude estimate can be obtained using the fact that a term like
G  leads to a first order transition with a higher Tp than in the
l6°case [17]. Using the experimentally observed increase of Tp [10]
(ATp==0 .1.. 0 . 2Tp) and the correlation length measured by X-ray scatter
ing at ambient pressure [12], we obtain from Ginzburg-Landau theory
[20] 9V^T/2u)®5^0.2 at T=2Tp. The lifetime parameter y is not known
experimental?y, however, neutron scattering does not indicate over-
damping of the soft mode, so that we have From the above values
and assuming u /y=5 we obtain g (2Tp) =:0.7. This value would lead to a
considerable dicrease of Op, whereas the single electron conductivity
is much less affected. We conclude that suppression of the (collec
tive) fluctuation contribution to the conductivity is a reasonable
explanation of the experimental results [10] . This picture is sup
ported by the fact that the transverse conductivity of TTF-TCNQ,
which is entirely due to single electron processes [21], is nearly
unaffected by commensurability [10]. This implies that a consider
able part of the longitudinal conductivity of metallic TTF-TCNQ in
the incommensurate state is due to CDW fluctuations.

The author would like to acknowledge helpful discussions with
J. Friedel and D. JSrome.
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