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CHEMICAL PSEUDOPOTENTIAL THEORY

OF SURFACE RECONSTRUCTION

Katuhisa SUZUKI and Toshiharu HOSHINO*

Department of Phye-ias, Osaka University,
Matikaneyama, Toyanaka 560, Japan

Chemical pseudopotential idea is applied to discuss reconstructions
at semiconductor surfaces. The surface energy is minimized in the
bond description from first principles. Simple models for two sur
faces of silicon lead to a reconstruction in agreement with current
pictures.

I. Introduction

Since Harrison's bond theory[1] of determining surface reconstruc
tions at semiconductor surfaces from energy principles, several the
ories [2-5] have been presented which aim at accounting for every
detail of LEED and photoemission spectra. These theories involve
either a couple of force constant parameters or a few scaling func
tions for interaction. The current microscopic theory [3-5] is capable
of predicting the reconstruction only after a complete surface band
structure is calculated as a function of the atomic displacements in
the surface region, which requires a huge amount of numerical calcu
lation. The resulting reconstruction, on the other hand, does not ap
peal to chemical bond intuition as Harrison's qualitative theory[l].

The chemical pseudopotential(CPP) method[6] is characterized by
complementary aspects. It is based on first principles and requires
no external parameters or scaling rules. It is a local theory that
fits to the chemical bond concept. In addition self-consistency is
in principle built in. The CPP method has been successfully applied
to the bulk band structure[7,8], the bulk moduli[9] and the imperfec
tions [10, 11] of covalent semiconductors. The electronic structure of
ideal and relaxed(but not reconstructed) silicon surfaces was dis
cussed by Casula, Ossicini, and Seloni[12] in this method.

We apply the CPP method to the problem of determining surface
reconstruction in its simplest version. Our numerical calculations
on the well-known silicon surfaces show that the method is conven

iently applicable and represents a natural extension of Harrison's
original discussion.

II. Bond Energies in the CPP Representation

An expression for the energy of a covalent bond in the bulk(un-
distorted) crystal was derived by Bullett[9] in the CPP formalism.
The breakdown of symmetry in the bonds near the surface requires a
modification, which can be done in an approximate way by still con
sidering a bond l<l)ab^ of form a ( 1 1 <1) b^) which is built from a
hybrid l(()a> of energy , located on atom A and directed toward atom
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B and a similar one on atom B, but now l<t)a> and l<j>b> are no more
equivalent and have different atomic energies because atoms A and B
are in different environment. Following the notation of Bullett[9],
the bond energy is given by

^ab= (1/2)(e° + 8«)
V +v^^+v -Ys

.  aa DP ab ba a,core b core D,a ■H. V  ,
core a core a,b

2{1+S^^)

"( ^ ®ab,bd^bd,a ^ ®ab,ac^ac,b^
d  c

(1)
[ a ^=2(146^^^) ]

in terms of the overlap S and the matrix element V of the change in
atomic potential caused by the presence of a neighbor atom. In eq.
(1) both S and V are evaluated between hybrids and bonds but they are
also expressible as linear combinations of matrix elements between
atomic orbitals. We have evaluated these using Herman-Skillman's
program and their values at the bulk interatomic distance are listed
in Table I. Their variation with interatomic distance is shown in
Fig.l. It should be noted that the core(2s,2p)-valence(3s,3p) matrix
elements are as large as or larger than the valence-valence ones and
are strongly distance-dependent. This leads to a large repulsion
(core orthogonalization[9] , the core terms in eq. (l)) and their vari
ation contributes very importantly to surface reconstruction.

Table I Potential matrix elements V
and overlap integrals S for n.n. Si
atoms at their bulk separation cal
culated with Herman-Skillman atomic
functions and potentials*. Note the
nonhermiticity of V

siOs^ap^)

2s3p(J
(core-val)

IL m V^'^CeV) tm
S

valence-valence

3s -3s -1.31 .251
3s -3pa -3.40 .397
3pa-3s -0.95 .397
3pa-3pa -1.71 .291

3pTr-3p-ir -0.81 .275

core-valence
2s -3s -4.185 .030
2s -3pa -12.146 .084
2pa-3s -2.167 .017
2pa-3pc -3.065 .030
2pTr-3pTr -1.111 .011
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Fig.l Variation of representative
overlap integrals S and potential
matrix elements V with interatomic
distance

111. Energy Minimization

We consider simplest models for two well-studied surfaces of Si
and examine how our method works. in all cases only the motion of
the first layer atoms along a symmetry axis is considered.

For the Si(111) 2x1 reconstruction we assume a simple ionic model
as shown in Fig.2(a) , where alternate rows of surface atoms are sub
jected to vertical displacements Uj and U2, with accompanying charge
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transfer 6Z from the lowered atom L to the raised atom R. The change
in energy per surface unit cell by this reconstruction is

6E(ui,U2,6Z)

=  ̂(Ui,U2)+26e^^(Ui,U2)+46e^^(Ui,U2)+26e^,^(Ui,U2)
'U2)+26e^,_, (Ui ,U2)

+ (1+6Z) [e°®{ui)+U6Z] + {l-6Z) [e®®(u2)-U6Z]-U(6Z) 2-2e'^®(0)

-2a(6Z)2

+(6+|6z)e®®(Ui)+(6-|6Z)e®®{u2)-12e^®(0) , (2)

eV3

d435A

(a) Si(11l)ionic model

001

110

(b) Si(001)dimer model

Fig.2 Reconstruction
models for Si surfaces

where, on the right, the first line rep
resents the energy change in the bonds
between the first and the second layer,
the second line the similar quantity for
the second and the third layer, the third
line the change in the surface dangling
bonds, the fourth line accounts for the
Madelung energy resulting from the sur
face ionization and the last line is the
change in electrostatic energy between
the first and the second layer. The intra-
atomic Coulomb repulsion U is estimated
to be 'v7eV from the calculated free atom
ionization energies and the Madelung en
ergy a is '\'0.7eV for the surface lattice.
After eliminating 6Z from the minimum
condition

6Z=

2(U-2a)
(3)

the energy 6E can be determined for a given configuration; all bond
and electrostatic energies are calculated numerically as functions
of Uj and U2. The energy 6E reaches a minimum of -2.38eV at u,=
0.20d, U2=-0.18d and 6Z=0.38 electrons, where d=bulk n.n. distance
2.35A. At this configuration, the charge transfer, the change of
core orthogonalization by reconstruction, and the distortion of
surface dangling bonds contribute almost equally to lowering energy,
and their sum overcomes the enhancement in the back bond energy.
The electrostatic energy does lower the energy but its contribution
IS not important.

In a similar method we have examined a dimer(covalent) model [13]
for the same surface, in which alternate rows of surface atoms under
go a displacement u toward each other within the plane and the verti
cal dangling bonds rotate to form covalent bonds. The amount of this
rotation is determined by orthogonalizing the surface bond to the
three back bonds, so that the problem involves a single variable u.
We find that the total energy increases with u and no minimum is
attained; the increase in the three distorted back bond energy is
too great to be overcome by the bond forming energy.

On the (001) surface of silicon, on the other hand, the surface
atom has two back bonds and two dangling bonds, so that the direction
6 of one of its dangling bonds and the atom's parallel displacement
u can be taken as independent variables of the 2x1 dimer model. This
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reconstruction is illustrated in Fig.2(b). The change of total energy
per surface unit cell is

riH E S E S
6E(u,0)= 26e ,(u,0)+26e (u,0)+86e , (u,0)+86e (u)+26e ,(u) (4)

aa ab ab aa

for this model, where the first term represents the energy of the
new bond created at the surface and the other terms give similar
quantities as before. The total energy is again minimized with res
pect to u and 0. A minimum of -0.57eV per dimer is reached at u=
0.18d and cos0=O.7.

IV. Discussion

Table II compares the displacements of surface atoms employed
by several authors, which shows the values are still far from being
conclusive. One of the advantages of our method is its freedom from
accumulation errors in energy evaluation, which are inherent in most
band type calculations. Our model is extremely primitive, yet its
predictions are not inconsistent with current pictures of surface
reconstruction derived from diverse sources.

Table II Displacements in A of the first layer atoms in the (2x1) reconstruc
tion at the (111) and (001) surfaces of silicon, either assumed or determined'.
Some of the works involve displacements other than these. The primed and un-
primed displacements correspond to the two inequivalent atoms in the surface
unit cell, and z and z' are perpendicular to the surface.

(Ill) Authors z z'

(001)

present 0.47 -0.42

Taloni and Haneman (2x2) [14] 0.18 -0.11

Pandey and Phillips[15] 0.35 -0.29

SchlUter, Chelikowsky, Louie and Cohen[16] 0.18 -0.11

Appelbaum and Hamann[17] 0.16 -0.35

Harrison[1] 0.78 -0.78

Chadi[3] 0.31 -0.44

Authors X x" z z'

present 0.42 -0.42 0 0

Appelbaum and Hamann[2] 0.69 -0.69 0.09 0.09

Chadi[5] 0.46 -1.08 0.04 -0.44
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