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The general theory of local-field effects on
optical properties of crystal surfaces is developed.
Reflectivity is calculated using the local repre-
sentation of the dielectric tensor, including
electron-hole interaction. Application is made to
the (001) surface of a simple-cubic crystal.

I. Introduction

The optical properties of crystal surfaces have been the object
of extensive experimental investigation f1—41, but only recently
their theoretical understanding is becoming satisfactory [5,6]. The
importance of local-field effects has been stressed by classical
(Lorentz-Lorenz) calculations [7], while large excitonic effects at
surfaces are expected [8—10]. In spite of this, there is no theory
giving a comprehensive account of local-field and excitonic effects
on surface optical properties. The aim of this communication is to
develop such a theory, describing local-field effects via the
macroscopic non-local dielectric tensor, and including excitonic
effects in the generalized contact-exciton picture of Hanke and
Sham [11] . We will show the feasibility of these calculations and
their relevance in the case of a simple-cubic crystal with nearest-
neighbour interactions and surface states [9].

II. Macroscopic Non-local Dielectric Tensor
The equatlon of propagation for the Fourier-transformed electric

field E q#kz)G in presence of a semi-infinite crystal ( occupying
the half-space z>0) can be written as:
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where q¢ is the surface-plane component of the iight wave-vectoer,
kz and k’ are perpendicular to the surface and e(q” Zkzw)GyG' are
the Fourler components o©of the microscopic dielectric tensor.” The
2-dimensional periodicity has been taken into account through the
2-dimensional reciprocal lattice vectors éy. We define the field
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components E(q/k ) with]kzlsmaller than a cut wave-vector kg>sw/c,
as macroscopic, 8 microscopic the others. We eliminate the latter
from egs. (1), and find the propagation equation for the macroscopic
field Ey(g,z):

2
“~> >

-> > > >
V xV xEM(q,z) = f dz'ey(q,,z,z',w)" EM(q” "o (2)

3
The macroscopic non-local dielectric tensor SM(qV,z,z',w) has Fourier-
components (limited at |kgz|,|k%|< ke) given by:
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Here €+L(€L») is the right-hand (left-hand) lOngltudlnal component
of the microscopic dielectric tensor, while £LL (qﬂ, zrkKz/0)E 6; is
its longitudinal-longitudinal component defined in the subspace of
microscopic fields.

Local-field effects are formally absent from eq. (2), being
embodied in the macroscopic dielectric tensor. This is the genera-
lization to finite crystals of the bulk macroscopic dielectric
constant of Adler and Wiser [13], and reduces to the latter a few
layers inside the crystal [12], provided kg is chosen smaller than
the half-width of the bulk Brillouin Zone in the direction perpen-
dicular to the surface.

ITII. Reflectance and Ellipsometry
The solution of eq. (2) has been carried out in [5]and fGJ,

first order in wd/c (d is the depth of the surface-perturbed layer),
giving the surface contribution to reflectivity coefficient, AR:

w ~
ARS/RS = 4Ecos6 Im(A€ Myy/(eM--1)) (4)

for s-light incident in the xz-plane, and
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for p-light. 6 is the angle of incidence, €y the bulk macroscopic
dielectric constant, and (i, j#z)

= ® - ! -
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where 8_1 (E’Z') is the inverse kernel of ¢ (z,z'), and the depend-
ence on g, and w has been suppressed. Similar equations,
analogous to those of [6], can be given for internal reflectivity.
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This solution can be extended to the case of ellipsometry [5,12].
Writing the relative change (reflected to incident) of the polari-
zation ratio as:

r i . i
EE E E )=t iA),
Lo/ (BJE)=tangyexp (id)

we find the surface contribution: &A=Reu, Stgy=-tgygImy, where
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The off-diagonal components of the macroscopic dielectric tensor make
U dependent on the polarization ratio Eé/Eé of the incident wave.

IV. Local Representation

For sake of simplicity, we consider the case of a surface with
enough symmetry that the z-axis is a principal axis of the non-local
dielectric tensor. An example of such a surface is the (001)surface
of a simple-cubic crystal considered in next Section. In this case
the off-diagonal terms €yj,(z,z') vanish, and A€y, (i=x,y) can be
related to the longitudinal components of the microscopic dielectric
tensor [12]. We use the local representation of the longitudinal
dielectric response [11] including exchange, and we find, after
tedious matrix algebra [12]:

~ 2 i i%x -
=11 = b £ i +R! = i
A€Mii %;go{ (4me /QO) ss! sSss,(w)fs,exleqz(Rz Rz)]+ (EM 1)/21qzt(10)
where Q. is the unit cell volume, the index s(as well as s') labels

couples of valenge—conduct%on Wannier functions$, and ¢,, centered
respectively at Rz and R +R,, fi is the i-component of the dipole
matrix element, and the matrix S(w) is given by:
-1 -1
S(w) = (N (w)=V) . (11)

The polarizability matrix N(w), including electron exchange inte-
raction, is defined by eq. (2.46) of [11], while V is given by
eq. (3.11) of [11].

-1
A similar treatment can be developed forA%ﬂzz’ giving [12]):

g

o 2 Z z%x ) ; -1 . .
eMzz‘%;i“o“““e /)Ty £l S o () _jexp[iag (Ry+RH [+ (e -1)/2iqzhk (12]

The cut wave-vector k¢ does not appear in final formulas egs. (10)
and (12), as might be expected.
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V. (001) Surface of a Simple-cubic Crystal

surf. exciton We apply egs. (4) énd (10) Fo the
(001) surface of a simple-cubic cry-
stal. We consider a flat p-like valence
band and a s-like conduction band
with nearest-neighbour interactions, B
[ 9]. central-cell electron-hole (e-h)
interaction V¥ is considered, while
the Coulomb interaction Vg1 is exactly
accounted for, giving a central-cell
term V and dipolar interactions, that
we sum layer by layer according to [ 14].
We choose such parameters to obtain

bulk excitonic and local-field effects
_4 _2 0 2 of the same order as those computed
ﬁﬂD—En(EV) for diamond [11], namely B=0.5 eV,

2V-v*=-0.4 eV and (8/3)7f243=0.8 ev.
Then we invert analytically the ma-

Fig.1. Normal incidence re- trix N~1-V and compute normal inciden
flectivity of a simple-cubic ce reflectivity (Fig. (1)) as function
crystal, computed according . of K w-Ey, being E(g the average bulk
torone-electron theory (...), gap. The one-electron curve below the
including excitonic (---) and bulk gap (at -3 eV) is proportional
local-field (——) effects to the density of surface state,

showing the step-like singularity at
the onset (-3.5 eV). Logarithmic singularities are also evident at
-1.5 eV (saddle point) and 0.5 eV (surface band top). A strong di-
stortion is generated by inclusion of excitonic and local-field ef-

fects, which increase surface exciton binding energy and oscillator
strength.
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