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LOCAL-FIELD AND EXCITONIC EFFECTS ON
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The general theory of local-field effects on

optical properties of crystal surfaces is developed.
Reflectivity is calculated using the local repre
sentation of the dielectric tensor, including

electron-hole interaction. Application is made to
the (001) surface of a simple-cubic crystal.

I. Introduction

The optical properties of crystal surfaces have been the object
of extensive experimental investigation , but only recently
their theoretical understanding is becom.ing satisfactory [^5, 6j . The
importance of local-field effects has been stressed by classical
(Lorentz-Lorenz) calculations ([7,], while large excitonic effects at
surfaces are expected fS-IO]. In spite of this, there is no theory
giving a comprehensive account of local-field and excitonic effects

on surface optical properties. The aim of this communication is to

develop such a theory, describing local-field effects via the
macroscopic non-local dielectric tensor, and including excitonic
effects in the generalized contact-exciton picture of Hanke and
Shcim fll] . We will show the feasibility of these calculations and
their relevance in the case of a simple-cubic crystal with nearest-
neighbour interactions and surface states [9].

II. Macroscopic Non-local Dielectric Tensor

The equation of propagation for the Fourier-transformed electric

field E(q^kz)Q^in presence of a semi-infinite crystal ( occupying
the half-space z>0) can be written as:

G.
- (q)/ +k2+G,/ ) X +kz+G^ ) XE (q^kz)

2

where q^ is the surface-plane component of the light wave-vector,
k^ and k^ are perpendicular to the surface and e
the Fourier-components of the microscopic dielectric tensor.'''^The
2-dimensional periodicity has been taken into account through the
2-dimensional reciprocal lattice vectors 2^^. We define the field

1133



R. Del Sole and E. Fiorino

^^ 1 1 /components E(g^k2)Q, with] kg | smaller than a cut wave-vector k(;;>xj/c,
as macroscopic, ana microscopic the others. We eliminate the latter
from eqs.(1), and find the propagation equation for the macroscopic
field (qy,z) :

2

V xVxEM(q^^z) = -^ /„dz'ei54(q^ ,z,z',0)) •E(4(qyZ') . (2)

The macroscopic non-local dielectric tensor (q^,, z, z ', w) has Fourier-
components (limited at |kz|,|kz|< kc) given by:

^ M ''^z' ^ ^ '^z'^z OQ ~

Here is the right-hand (left-hand) longitudinal component
of the microscopic dielectric tensor, while (q///k2 ,k2/W )g is
its longitudinal-longitudinal component defined in the subspace of
microscopic fields.

Local-field effects are formally absent from eq.(2), being

embodied in the macroscopic dielectric tensor. This is the genera

lization to finite crystals of the bulk macroscopic dielectric
constant of Adler and Wiser and reduces to the latter a few

layers inside the crystal [12], provided k^ is chosen smaller than
the half-width of the bulk Brillouin Zone in the direction perpen

dicular to the surface.

III. Reflectance and Ellipsometry

The solution of eq. (2) has been carried out in fsjand (. 6j, to
first order in ud/c (d is the depth of the surface-perturbed layer),
giving the surface contribution to reflectivity coefficient, AR:

AR /R = 4—cos9 Im(Ae /
s  s c Myy M

for s-light incident in the xz-plane, and

2  2 2 -1
(e.-sin 9)Ae +e sin 9Ae

,0) „ , M Mxx M Mzz
AR /R =4—cos9 Im r (5)
^  ̂ 9-sin 0)

M  M

for p-light. 9 is the angle of incidence, Ej^ the bulk macroscopic
dielectric constant, and (i,j^z)

Ae =/ dzf dz'Te (z,z')-5 . (z-z')E ((0)7
Mn -«> -«> L Mil 11 M -1

00 00 CO 00 ~ i

/ dzf dz'/ dz"/ dz"'e . (z,z')e^' (z',z")e^ .(z",z'"), (6)-00 _oo -co -00 I4iz Mzz MZ]

Ae J =f dzf dz'fe^ (z, z ') - i5(z-z ')/e (w )] , (7)
Mzz t Mzz M J

—1
where inverse kernel of e^^^ (z,z ') f and the depend
ence on q^^ and lo has been suppressed. Similar equations,
analogous to those of [s], can be given for internal reflectivity.
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This solution can be extended to the case of ellipsometry j^5,12j.
Writing the relative change (reflected to incident) of the polari
zation ratio as:

E^E^/ (E^E^)=tangij;exp (iA ) ,
p s s p

we find the surface contribution: 6A=Revi, 6 tgi|j=-tgt(JoIiny, where

y=-2^cose(ej,-1)"'' (e^cos^e-sin^e) {A^Ae^^^t (sin^9-0^cos^6) Ag^^^t
e ^sin^GAe ^-Ae A He^/E^ ) (AcosB-sin^e) - (E^/E^) (AcosB+sin^ 0)1
M  Mzz Mxy bp s s P

+Ae e sin0 He^/E^)(Acos9-sin^0)+(E /E )(Acos0+sin 9^}/ (8)
Myz M ^ p s s p

2  1/2
A = (E„-sin 0) , and

M

00 CO oo — 1

Ae =f dzf dz'f dz"Ae (z,z')£ (z',z"). (9)
Myz -"o — -<» Myz Mzz

The off-diagonal components of the macroscopic dielectric tensor make

y dependent on the polarization ratio E^/E^ of the incident wave.

IV. Local Representation

For sake of simplicity, we consider the case of a surface with
enough symmetry that the z-axis is a principal axis of the non-local
dielectric tensor. An example of such a surface is the (001)surface
of a simple-cubic crystal considered in next Section. In this case

the off-diagonal terms £^j^^(z,z') vanish, and Acj,j^^(i=x,y) can be
related to the longitudinal components of the microscopic dielectric

tensor £^2"] • We use the local representation of the longitudinal
dielectric response [llj including exchange, and we find, after
tedious matrix algebra [12j:

Ae„. ,=lim {-(4Tre^/fi-)I , f "^S (oi ) f ̂*exp I iq (R +R')7 + (e -1)/2iq ^(10)
Mil q^-^Q 0 ss' s ss' s' t z z J M ^z ,

where is the unit cell volume, the index s(as well as s') labels

couples of valence-conduction Wannier functions (ty and (("y, centered
respectively at Rz and S +Rz/ is the i-component of the dipole
matrix element, and the matrix S((o) is given by:

S (to) = (N~^ ((o)-V)~^ . (11)
The polarizability matrix N(a)), including electron exchange inte

raction, is defined by eq. (2,46) of [ll^f while V is given by
eq. (3.11) of fll]- —ry

A similar treatment can be developed giving ["12"]:

Ae^ =lim { (4Tre /n ) E , f S (u))f ,expfiqz (Rg+R^)1 + (e -1)/2iqz}. (12!
Mzz a-»-0 O ss s ss' s m

The cut wave-vector kc does not appear in final formulas eqs.(10)
and (12), as might be expected.
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V. (001) Surface of a Simple-cubic Crystal

surf, exciton
AH

(a.u.)

fj\
nw

-4 -2

We apply eqs.(4) and (10) to the

(001) surface of a simple-cubic cry
stal. We consider a flat p-like valence
band and a s-like conduction band

with nearest-neighbour interactions,g

C 9]- Central-cell electron-hole (e-h)
interaction is considered, while
the Coulomb interaction i is exactly
accounted for, giving a central-cell

term V and dipolar interactions, that

we sum layer by layer according tori4].
We choose such parameters to obtain

bulk excitonic and local-field effects

of the same order as those computed
for diamond fll], namely 3=0.5 eV,
2V-V*=-0.4 eV and (8/3) Trf2,>no=o. 8 eV.
Then we invert analytically the ma
trix N~^-V and compute normal inciden
ce reflectivity (Fig.(1)) as function

of J<(ij-Eq, being Eq the average bulk
gap. The one-electron curve below the

bulk gap (at -3 eV) is proportional
to the density of surface state,

showing the step-like singularity at
the onset (-3.5 eV). Logarithmic singularities are also evident at
-1.5 eV (saddle point) and 0.5 eV (surface band top). A strong di
stortion is generated by inclusion of excitonic and local-field ef
fects, which increase surface exciton binding energy and oscillator
strength.

0  2
fico-Eo (eV)

Fig.l. Normal incidence re

flectivity of a simple-cubic
crystal, computed according.,

to;one-electron theory (...),
including excitonic ( ) and

local-field ( ) effects
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