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The spectral density of normal vibrations corresponding both to the soft phonon
branch and to other lattice modes near the structural phase transition point in an im-
perfect crystal is studied within the framework of the Landau theory. The existence of
static defects is shown to lead to various changes in the spectra depending on tempera-
ture substantially.. The possibilities of experimental verification of theoretical results

obtained are discussed.

It is well-known!) that the distortion of an
ideal crystal lattice periodicity caused by a
defect leads to the interaction between any
normal vibrations being independent in the
absence of a defect. Such an interaction has
been considered in a number of papers, but the
problem of investigation of the defect induced
changes in the lattice vibration spectrum de-
serves a special treatment in the case of tempera-
tures, close to a structural phase transition
point. In contrast to the usual situation the
influence of a defect is not restricted to neigh-
bouring atoms but spreads to a vast region, the
dimensions of which increase when approach-
ing a transition point 7=T,. As a result, the
defect induced changes in the lattice vibration
spectrum depend strongly on a temperature
evolution.

It has been shown recently that the most
pronounced influence is due to the defects which
cause the local ordering in their vicinity even in
symmetrical phase.?® Below we consider es-
pecially such defects, taking into account, for
the sake of simplicity, the symmetrical phase
only. We are interested here in so-called
“frozen-in”’ (immobile) point defects unlike to
ref. 4, where the influence of hopping defects on
the spectrum of the order parameter vibrations
has been considered.

The characteristic dimension of a region,
where the defect induced ordering takes place is
the correlation radius r, of the order parameter
n. As r.—»o0 when T—T,, the defect induced
ordering can be described in continuous-
medium approximation. The same approxi-
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mation is used below for describing lattice
vibrations as well. Thus we restrict ourselves to
the vicinity of the center of Brillouin zone and to
the vicinity of the soft mode wave vector.
Besides we use an independent defect approxi-
mation which is valid in the temperature range
not very close to T, or at Nr2 <1, where N is the
concentration of defects. In this paper the one
component order parameter (non-degenerated
soft mode) is considered. At the same time we
take into account some other normal coor-
dinates ¢ (fully-symmetrical normal vibrations)
and { and ¥ (non-symmetrical normal vibra-
tions.

The thermodynamic potential density de-
pending on #, ¢, { and Y had the form
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As usual we put here A=A4,7, 1=(T—-1T,)/T,
and other coefficients to be independent of .
The coefficient r, differs from zero for any
transformation properties of  and the
coefficient r; differs from zero only in the case
when the transformation properties of { are the
same as those of the second rank symmetrical
tensor.

The aim of the present work is to reveal
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the peculiarities of correlation functions
ke, om(—k,~0)y,  (Ekw)i(—k—)),
... for the values k0.

In order to facilitate further explanations we
remind some results of the “‘mode-coupling”
theory. Let an x-oscillator be coupled linearly to
some other y-oscillator. If the y-oscillator
is overdamped and if its relaxation rate Qy,
is less than the eigen frequency @, of x-vibra-
tions, the power spectrum of x-fluctuations
{x(w)x(—w)) contains three maxima: two
side ones at frequencies Q~ +Q_ . and a central
peak at Q=0. In the case when both
oscillators are underdamped, the spectrum of
x-fluctuations contains four maxima at
frequencies Q~ + Q. and Q~ £ Q, iftheeigen
frequency Q,, of y-vibrations is less than Q..

Consider now the n-fluctuations spectrum.
The defect of type mentioned above gives rise to
static lattice distortions corresponding to # and

-to some other variables
g .
1e(e) = o= e, E0)~In @), ()
where d is the dimension of the defect core (of
the order of magnitude of interatomic distance)
and 1, is the order parameter value at the point
of defect location, n, being practically inde-
pendent of temperature in the vicinity of 7.
Owing to these distortions the linear coupling
between variables n'=n—n, and &'=¢-E,
takes place in symmetrical phase, whereas in a
pure crystal only non-linear coupling occurs [see
eq. (1)]. The term in the free energy correspond-
ing to the linear coupling is written using
Fourier-transforms of # and ¢
27 2": n(—k—qn'(q)¢' (k) 3)
Thus, an oscillator #'(q) is coupled linearly
to a number of oscillators &'(k). It follows from
from (2) that
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so the function #, (k) is practically independent
of k for k<r;' and decreases rapidly for
k>r . As the number of &'(k)-oscillators is
proportional to k2 the main contribution to the
n-fluctuation spectrum is due mainly to &'(k)-
oscillators with k~r; .

n.(k) (4)

If &'(k) correspond to an underdamped opti-
cal phonon branch lying below the soft branch
then two additional side bands appear in the
spectrum of n-fluctuations not too close to the
transition point. As to optical phonon branches
more common is the situation when they lie
much higher than the soft mode branch. In this
case the coupling between ¢’ and 1’ manifests
itself in the temperature dependent broadening
of the soft mode line. The essence of such a
phenomenon may be easily explained by con-
sideration of two coupled oscillators x and y. If
Q,,>>Q,, one may neglect the inertia term in
the equation of y-oscillator motion when con-
sidering x-vibrations, so it is possible to treat y
as a relaxator.

In our case the oscillator 1'(¢~0) is coupled
to a number of &’(k)-oscillators (an amount of
which is proportional to r; ?), thus the contri-
bution of the &-branch to the damping constant
r,=v,/m, of the soft mode is approximately
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As to the estimates, the ratio 4T',/I", may
reach the values 0.1 ~1 at the boundary of
applicability (Nr? =1) of used approximation of
independent defects.

Note that the contribution of the same order
of magnitude may be provided by alternating
temperature gradients induced in the defect
vicinity by the soft mode vibrations.>® Remind
also that such a type of “mode” interaction
leads to the appearance of a central peak in the
spectrum of y-fluctuations.®

Analogically a central peak appears due to
coupling between the soft branch and a fully
symmetrical phonon branch (if the last is over-
damped and its relaxation rate Q. is less than
the eigen frequency Q,, of y-vibrations.

One more example of a variable being in-
variant under operations of the high-symmetry
group of the crystal is the mass density ¢ or
dilatation v= —Ag/p,. The frequency of v-
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fluctuations (long wave longitudinal acoustical
phonons) is substantially less than that one of
the soft mode. As the acoustical branch is
underdamped, the defect-induced linear coupl-
ing between the given acoustical mode v(k) and
thé soft mode gives rise to the appearance of two
narrow side maxima at the frequencies Q,, =
+c/k. For the whole acoustical branch these
maxima are superimposed forming two wide
side bands at the frequencies Q,= +c/r..”
Nearly of the same value is the width of these
lines. Note that the position of this line max-
imum has the same temperature dependence as
the soft mode maximum, hence we may say that
defects induce something like the additional soft
mode maximum in the spectrum of lattice
vibrations. Probably the maximum of such a
kind has been observed experimentally in
SbSJ.®

Discuss now the influence of defects on the
spectrum of &-vibrations. Assume at first the
eigen frequency of ¢-vibration to be far higher
than the eigen frequency of the soft mode. In
terms of x-, y-oscillators we investigate the
influence of the low frequency oscillator (x) on
the high frequency oscillator (y). The contri-
bution of such a coupling to the damping
constant of y-oscillator is quite analogous to
that given above by eq. (5) with substitution I’ "
for I';, so AI',cot™'2. Thus, the defects can
induce the temperature anomaly of the damping
constant (i.e. of the line width) of high fre-
quency optic vibrations. We know no more
mechanisms which may provide temperature
anomalies of such vibrations at phase tran-
sitions.

It has been shown in ref. 9 that in the case of
the overdamped soft mode the defects cause the
temperature dependence even of the damping
constant of acoustical phonons having the
frequency much higher than the order para-
meter relaxation rate. Estimations show such an
anomaly to be quite observable in the broaden-
ing of Mandelstam-Brillouin components near
the phase transition in NH,C1.1?

Defects may induce temperature dependent
anomalies for transverse acoustic waves also.
These anomalies are due to defect induced
coupling between the oscillators { (transverse
acoustic mode) and #, which is described by the
sixth term in eq. (1). Really, in the vicinity of
the defect dn,/0x; #0, so the non-linear coupling

relevant for a pure crystal gives rise to linear one
for a defect crystal. The temperature de-
pendence of the defect contribution to the
damping constant of the transverse acoustic
mode is 41" ,c>t~ /2 for the sound frequencies
less than the order parameter relaxation rate.
This anomaly disappears for the high frequency
transverse acoustic waves. The anomalies of the
attenuation of the transverse acoustic waves
have been observed in Rb,ZnCl,.'" They were
mentioned to be different for different samples.

As to the interaction described by the fifth
term in eq. (1), when it is possible for a phonon
mode of any transformation properties, the
interaction may provide only non-linear coupl-
ing even in a defect crystal. In fact, in the
presence of the defect this term transforms to
the third order term 2t,1,1'y%. The temperature
anomalies caused by such a coupling are very"
weak.

In conclusion, let us discuss the defect
influence on lattice vibrations having the same
transformation properties as the order para-
meter has. In this case we may add the terms t,7¢
+15n%p to eq. (1). The defect influence is de-
scribed only by the term 75n7°¢ which provides
the additional linear coupling between 1’ and ¢
written in the form 3tn2n'ep. However, this
coupling leads only to temperature independent
renormalization of the constant r,.
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