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DYNMICS OF A SPIN-GLASS MODEL WITH INFINITE-RANGE INTERACTIONS
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The various static susceptibilities which can be obtained fo4
the Sherrington-Kirkpatrick model below the freezing tempera-
ture T1 are discussed. The dy'namical susceptibility 1(orT) is
calculated for a Glauber spin glass at al1 temperatures. Its
static limit upo leads for T 1 Tf to X(uJrT) * c.lV with v=l /2,
at least to order (l-T/Tf)3.

l. Static Susceptibilities
Conventional spin glasses are dilute magnetic alloys in which the magnetie

atoms are randomly distributed over the lattice sites. Edwards and Anderson [1 ]
were the first who considered a spin glass modet with random bonds instead of
random sites. Their model was further simplified by Sherrington and Kirkpatrick
(SK) [2] by assuming infinite-range interactions between all spins. We consider
an Ising model

S1 , Si=tl r (t)

spins interact withwith the magnetic fields hi (in units of Ug) in which all
the same Gaussian bond distribution

e(.r15) = (N/2n azrt/2 exp [- Nr2ijl2 ?] .

Here, N is the number of spins and the scaling of the variance ", N-l ensures
a sensible thermodynamic limit.

The model (l) with (2) has not yet been solved exactly. The first reliable
calculation of a static susceptibility based on replica symmetry breaking due
to Parisi [3] yielded X(T)=Tf-l (in units of (eUs)2) at all temperatures below
Tt. This result has also been obtained by Sompolinsky [4] and Hertz [5].

However, X=Tf-l is not the only stable static susceptibility of the SK

model. The equations of Thouless, Anderson and Palmer (TAP) [6] have a number
of solutions below T1 which increases exponentially with N [7r8]. These solutions
can be envisaged as local minima of the free energy in the configuration space
which for N+- are separated by infinitely high energy barriers. Depending on
the average over these minima, one can define infinitely many static suscepti-
bilities which are all stable. The systems is non-ergodic [9]. As a consequence,
the timg-ave.ra-ge.4 spin glass parameter [1 ]

?<r> = &iq*i% [<si(o)si(t)>J,
1 +o lrJ+ (

is dif ferent from the e.nseJnb-l,e avs_ra-g.e

q (r) = f,lg*lg [ . si" ]-r
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bution (2).
The parameter q(T) is non-zero only if a symmetry breaking field is applied.

rt is determined in general by all 1ocal minima or by the totar phase space,
weighted with Boltzmann factors. The evaluation of the partition functitn of
smal1 systems, extrapolated to N+@1 yields l-qc T for T aa Tf.

rn contrast, the paramete. t1r; is obtained from Monte carlo (MC) simu-
lations [10] which by construction yield the time average and in which the sys-
tem remains for T+0 in a single (representative) minimum wittr t{r T2 and
lrith the suscepribiliry [1f1=g1l-!')* T where B=T-1. This low remferarure re-
sult of MC simulations agrees with the solution obtained by TAp t6].

The different sPin glass pararneters are connected to different 1oca1 dyna-
mical suscePtibilities Xii (tl) and iii (rrl) . The f lucruarion-dissipatio-n--EEorenr
reads

@

Iat
..a

where [i.(ur) is regular for ctl+o

A=e-9 r

.i't [ <si(o)s1(r)>- *sir' ]J=(2Tl0i)rm xii (o)

= (2T / a)ro, iii ( o) +2rA6 (o)

Equation (5) leads for o+o to

(s)

(6)
explicitely exhibiting A as a measure of the non-ergodicity. It also indicates
that the non-ergodicity is effective only in the static limit. Applying Kramers-
Kronig relations to (5) yields the 1ocaI static susceptibilities

@

Xi1(o=o)=n '_JOr' L Xii(o')/r,r' = B(l-q)= B(rji+A) , (7)

(8)ii1(".'o; =

The result (7)
t3l

B(r-a).
is surprizing since Parisi obtained for the total susceptibility

I

X.:, = B(l-Jdx s(x) )rJ o

-t
Xaoa= N '.I

1J
(e)

introducing a continuous set of spin glass parameters q(x). Eqs. (7) and (g)
imply 1ii*o for i+j, in contrast to a symnetry argument proposed earlier [11].
As point6d out in [9], off-diagonal terms give a finite contribution to Xtotfor the following reasons: (l) there are N(N-l) off-diagonal terms in conirast
to N diagonal ones' and (2) the limit h+o does not lead to the state with
h=o since the system occupies in both cases different states which are sepa-
rated by infinitely high energy barriers. The difference between xi- and laoais not clear in the papers of parisi and sompolinsky [3,4]. Hertz t5J ....riiiy
proved that indeed Xtot=Tf-l whereas Xii+T1-1.

Depending on time, magnetic field and history (field cooled or isothermal
magnetization) the system can go into rather different sets of 1oca1 minima.
since part of the porential barriers becomes infinitely high below T6, the
system usually remains blocked in these states. A classification of i set of
spin glass parameters i(") = [<Si(o)Si(rx)>], in rerms of a distribution of
relaxation times t*r all of which become infiilite in the thermodynamic limit,
has been introduced by Sompolinsky [4]. Here, t** exp [BEx] is ihe relaxarion
time for surmounting the energy barrier Er+o 1,f15 .the confinuous variable
x€ [0r1] agd !'65=o;=o for the iongest timS x=o. Sompolinsky identifies the maxi-
mum value q(l)=q with the time average (3) and determines ((f) bV rhe de Almeida-
Thouless (AT) stability criterion [12]. The non-ergodicity on the time scale x
is described by a second set of parameter A(x) vrith the maximum value A(o)=A
for the largest time (the "true" equilibrium) where A is defined in (7). Near
to the AT stability line or for the shortest time x=l the system becomes ergodic
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viith A(l)10, a1d the 1ocal andbtal susceptibilities become equal. The identi-
fication q(l)=q _does not seem to be necessary. It leads to a susceptibility
Xli(T)=Xsor=q(l-q) which is initially flat just below Tf whereas Hertz t5l
derives for [i1 an expression which is symmetric above T1, in agreement with
the measured a.c. susceptibility. Hertz [5] also stresseE a necess,ary relation
betvreen A(x) and i'("). ft" free energy functional which leads ro Q''(x,T) and
A(x,T) introduced by Sompolinsky recently has been derived by de Dominicis et
a1. [13] via a replica method. Sommerg^ [14] showed, that i'(o) b."o*es finite
inanon-zerofield h withG-(")*h2/3fo, alltemperatures O< T< Tland
small fields.

2. Dynamical Susceptibility
The Ising model has no inherent spin dynamics. Here we consider the

Glauber model in which the spins are coupled to a "heath batht' which induces
spontaneous spin flips and can be identified with the conduction electrons of
the host. We 611ow closely the classical paper of Suzuki and Kubo [15] and
extend a theory for T > T1 of Kinzel and the author h6] to T< T1. We have
in mean field approximation (which is exact for the infinite range model)

(t+t d/dt) < S1(t)> = tanh B. hiff, ,

with the Korringa relaxation time t and where the effective
the lattice site i is given by the TAP equations t6l

aFFh?" = hi * E.rtj sj - B?(l-a) si
We diagonalize the random symmetric matrix

Jii =Jii= U J)<i/l><x/j>
l=l A

with the real orthonormal eigenvectors < l/i>. This leads with
qtr I

i
<I/i><Si> , hl = : <tr/i>hi

( I +t d/dt) q^ = -B'3(r-i))el, * Bhtr,

( lo)
field hfff at

(ll)

i.il r'..,'n{;, 
[,ur^,

(t2)

(13)

].v^',)<,r>
For T > Tg, hi-o and small deviations out of equilibrium equs. (lO) and (14)
can be linearized since < Si>h=o=O in thermal equilibrium. For T S T1 the
modes I are strongly coupled. As shovrn by Sompolinsky [17] this can be taken
into account by a self-energy Xo(o) with Xo(o)=l for T: fi. One has for the
staggered dynamical susceptibility

Xl
wirh rhe

p(r

(r.o) = dql/dtr^ = B[Xo l1t-irt; - BJI * g';'(l]f,)]-l
eigenvalue density of a random matrix

u-l) = er?)- t 1+72-iz1t /z 1 l; I ziy

(ls)

(16)

( l7)

the total susceptibiliry is easily found to Ue (i=r/Tg)

X(o,r) = *-, i, *r, (o,t) = *-, i X^(o,r)

= 3 ti' xo-l (l-iurtl * r-i-(,1'xo1(t-ic,rt) * lil'z-4izr1/2,
The limit .&irX(at) can be chosen in such a way that ir agrees with the TAP so-tr.Po '

lution i'=O<t-;1. This is the susceptibility for the shortest(infinite) re-
laxation time t*=1 and yields

xo(o=o) = l-4". (18)

The condition (18) js identical with the onser of non-ergodic behaviour [17].
Inserting Q',(t)=E-['*r3-* ... with E=t-t from rhe AT Jtauilitv line [4] one
has at least to order i3 the limit 

ft3gr X(o,t) n ssl/2 (TS T1). This ,l/2 L^,
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indicares a marginal phase transition: The staggered susceptibility (15) diverges
for all T1 Tf and the spin correlation function [< S;(o)S.i(t)>1, decays in the
long-rime 1i*it as (t/'r)-i 12, in agreement with the l,toite Cirlo dBta of Kirk-
patlict and Sherrington't10J. ft. Jr*" critical exponent v=| f,as been obtained
for the infiqite-4ange vector model [18]. However, our resuTt differs from
v(T)=l /Z-f li+O(i2) derived by Sonpolinsky and Zippelius [19] for a soft spin
model. Possibly, this discrepancy is due to the different models.

One can also consider the limit up o in which X(orT) reduces to the suscepti-
bility X(T)=B(l-E+A(o)) [4] for the longest (infinite) relaxation time t
This leads to a relation between Xo(o=o), A and E" which replaces (l8f:o
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