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DYNAMICS OF A SPIN-GLASS MODEL WITH INFINITE-RANGE INTERACTIONS
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The various static susceptibilities which can be obtained for
the Sherrington-Kirkpatrick model below the freezing tempera-
ture T, are discussed. The dynamical susceptibility X(w,T) is
calculated for a Glauber spin glass at all temperatures. Its
static limit wro leads for T< Tf to X(w,T) = w¥ with v=1/2,
at least to order (]—T/Tf)3.

1. Static Susceptibilities

Conventional spin glasses are dilute magnetic alloys in which the magnetic
atoms are randomly distributed over the lattice sites. Edwards and Anderson [1]
were the first who considered a spin glass model with random bonds instead of
random sites. Their model was further simplified by Sherrington and Kirkpatrick
(SK) (2] by assuming infinite-range interactions between all spins. We consider
an Ising model

1

H=‘§§jJij SiSj—Ehi S; ’ S; = +1 (1)
with the magnetic fields hj (in units of Hg) in which all spins interact with
the same Gaussian bond distribution

P(Jij) = (N/Z’IT’?TZ)]/Z exp [~ NJi'_j/z 37 . (2)
Here, N is the number of spins and the scaling of the variance as N_1 ensures
a sensible thermodynamic limit.

The model (1) with (2) has not yet been solved exactly. The first reliable
calculation of a static susceptibility based on replica symmetry breaking due
to Parisi [3] yielded X(T)=Tf"1 (in units of (gup)?) at all temperatures below
Tg. This result has also been obtained by Sompolinsky [4] and Hertz [5].

However, )(=Tf_1 is not the only stable static susceptibility of the SK

model. The equations of Thouless, Anderson and Palmer (TAP) [6] have a number
of solutions below Tf which increases exponentially with N [7,8]. These solutions
can be envisaged as local minima of the free energy in the configuration space
which for N-w are separated by infinitely high energy barriers. Depending on
the average over these minima, one can define infinitely many static suscepti-
bilities which are all stable. The systems is non-ergodic [9]. As a consequence,
the time-averaged spin glass parameter [1]

~J . .

q(T) = %ﬂ&,%}f& [ <8;(0)8i(t)>]; (3)
is different from the ensemble average

a(T) = fim fim [ <8;>*1; (4)

235



K. H. FISCHER

where <...> means thermal averaging and [...]J averaging over the bond distri-
bution (2).

The parameter q(T) is non-zero only if a symmetry breaking field is applied.
It is determined in general by all local minima or by the total phase space,
weighted with Boltzmann factors. The evaluation of the partition function of
small systems, extrapolated to N-e, yields l-q= T for T << Tg.

In contrast, the parameter q(T) is obtained from Monte Carlo (MC) simu-
lations [10] which by construction yield the time average and in which the sys-
tem remains for T-0 in a single (representatlve) _minimum with l—qx T2 and
with the susceptibility X(T) 8(1—q)<x T where R=T !. This low temperature re-
sult of MC simulations agrees with the solution obtained by TAP [6].

The different spin glass parameters are connected to different local dyna-
mical susceptibilities X (w) and Xll(w) The fluctuation-dissipation theorem
reads

j dt e [ <5;(0)$; (£)>= <8;>71;=(2T/w) Im ¥1; (w)

s o (5)
=(2T/w) Im Xi 1 (W+2mAS (w)

iwt

where i}i(w) is regular for w-o . Equation (5) leads for w-o to
A=9-q , (6)

explicitely exhibiting A as a measure of the non-ergodicity. It also indicates
that the non-ergodicity is effective only in the static limit. Applying Kramers-—
Kronig relations to (5) yields the local static susceptibilities

X;i (w=o0)=m" _idw Im x;. (@) /w' = B(1-q)= B(1-q+A) (7)

Xj;(w=0) = BO1-O), (8)

The result (7) is surprizing since Parisi obtained for the total susceptlblllty
(3]
=1

Keor™ VT %5 - B(l-gdx a(x) ) €)

introducing a continuous set of spin glass parameters q(x). Eqs. (7) and (8)
imply le*o for i*j, in contrast to a symmetry argument proposed earlier [11].
As pointed out in [9], off-diagonal terms give a finite contribution to Xto

for the following reasons: (1) there are N(N- 1) off-diagonal terms in contrast
to N diagonal ones, and (2) the limit h-»o does not lead to the state with
h=o since the system occupies in both cases different states which are sepa-
rated by infinitely high energy barriers. The difference between X;: and Xeot
is not clear in the papers of Parisi and Sompolinsky [3,4]. Hertz té] recently
proved that indeed Xeot=Tf™ I whereas X11¢Tf

Depending on time, magnetic field and history (field cooled or isothermal
magnetization) the system can go into rather different sets of local minima.
Since part of the potential barriers becomes infinitely high below Tg, the
system usually remains _blocked in these states. A classification of a set of
spin glass parameters q(x) [<S (0)8; (ty)>]. in terms of a distribution of
relaxation times t,, all of Wthh become infinite in the thermodynamic limit,
has been introduced by Sompolinsky [4]. Here, t_« exp [BE ] is the relaxation
time for surmountlng the energy barrier Ey—c with .the continuous variable
x€ [0,1] and qu o)=o for the longest tlme x=0. Sompolinsky identifies the maxi-
mum value q(l) =q with the time average (3) and determines q(T) by cthe de Almeida-
Thouless (AT) stability criterion [12]. The non-ergodicity on the time scale x
is described by a second set of parameter A(X) with the maximum value A(o)=A
for the largest time (the "true'" equilibrium) where A is defined in (7). Near
to the AT stability line or for the shortest time x=1 the system becomes ergodic
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with A(1)=0, and the local and tbtal susceptibilities become equal. The identi-
flcatlon q(l) q _does not seem to be necessary. It leads to a susceptibility
X11(T) Xtot B(l -q) which is 1n1t1a11y flat just below Ty whereas Hertz [5]
derives for {j;i an expression which is symmetric above T¢y in agreement with
the measured a.c. susceptibility. Hertz [5] also stresses a necessary relation
between A(x) and q(x) The free energy functional which leads to q(x T) and
A(x,T) introduced by Sompolinsky recently has been derlved by de Dominicis et
al. [13] via a replica method. Sommer7 [14] showed, that q(o) becomes finite
in a non-zero field h with q(o)th for all temperatures 0< T< Tg¢ and
small fields.

2. Dynamical Susceptibility

The Ising model has no inherent spin dynamics. Here we consider the
Glauber model in which the spins are coupled to a "heath bath'" which induces
spontaneous spin flips and can be identified with the conduction electrons of
the host. We bllow closely the classical paper of Suzuki and Kubo [15] and
extend a theory for T > T¢ of Kinzel and the author [16] to T< Tgo We have
in mean field approximation (which is exact for the infinite range model)

(14T d/dt) <Si(t)> = tanh g<h§il> (10)
with the Korringa relaxation time T and where the effective field heff at
the lattice site 1 1is given by the TAP equations [6]

n$EE = by vz g5 sy - B TPO-D s (1)
We diagonalize the random symmetric matrix
N
io o= Jus = <i/a>< A/3>
Tga = Jgs )\El Jy <i/X /3 (12)

with the real orthonormal eigenvectors < A/i>. This leads with
q, = )i:<x/i><si> » by = % <A/i>hj (13)

to

(1+1 d/dt)q, = £<i/ A>tanh{s [(BJ —B23%(1-9))q,r + Bh., <i/A'> b (14)
For T > T¢, h;j-o and small deviations out of equilibrium equs. (10) and (14)
can be linearized since <Sj>,_ =0 in thermal equilibrium. For T< Tg the
modes A are strongly coupled. As shown by Sompolinsky [17] this can be taken
into account by a self-energy X,(w) with ¥ (w)=1 for T > T%. One has for the
staggered dynamical susceptibility

_ _ =1 s _ 275 0 oo a—]
Xx(w) = dq,/dh, B[xO (I-iwt) - BJ, + B*J°(1-9)] . (15)
With the eigenvalue density of a random matrix
p@) = @I 1 (432-0%)1/2  (|1k 2T (16)

the total susceptibility is easily found to be (EET/Tf)

XD = N2 x5 @1 =N Iy (D)
ij AA

= % {12 %, "M (1-iwt) + 1—El([izxgl(1-iwr) v 1-412-472) /2y

. (17)

The limitw&imx(w) can be chosen in such a way that it agrees with the TAP so-
o

lution QQB(I-aﬁ. This is the susceptibility for the shortest (infinite) re-
laxation time ty_; and yields

Xo(w=0) = 1-q . (18)
The condition (182 is_ 1dent1ca1 with the onset of non-ergodic behaviour [17].
Inserting §(T)=t-t2+t —+ «.. with t=1-T from the AT stability line [4) one
has at least to order t3 the limit &ig X (W, T) wl/2 (T< Tg). This wl law
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indicates a marginal phase transition: The staggered susceptibility (15) diverges
for all T< Tg¢ and the spin correlation function [< S, (0)S. (t)>]. decays in the
long-time limit as (t/T)_l/z, in agreement with the Monte Carlo data of Kirk-
patrick and Sherrington [10]. The same critical exponent v=1 has been obtained
for the 1nf}n1te range vector model [18]. However, our resu{t differs from
v(T)=1/2-m t+0(t?) derived by Sompollnsky and Zippelius [19] for a soft spin
model. Possibly, this discrepancy is due to the different models.

One can also consider the limit w>o in which YX(w,T) reduces to the suscepti-
bility x(T)=R(1-q+A(o)) [4] for the longest (infinite) relaxation time t

~

This leads to a relation between Xo(w—o), A and @ which replaces (18§—
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