Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 896-897

3.47

Model-free analysis of the first-rank observables in d + d system and unbound states of ⁴He in giant resonance region

A.M. Yasnogorodsky

Institute for Nuclear Research, 252028 Kiev, USSR

The polarization phenomena in the d + d system have some unusual features at lab energies 8 - 14 MeV. Although from the analysis of dd elastic cross section the contribution of orbital angular momenta L > 0 is well established, the values of the vector analyzing power A_y^{el} are close to zeroes (Fig. 1a) and are much smaller of those for the N + 3N, N + α , d + 3N systems at comparable energy. Around $E_{cm} = 5 - 7$ MeV the significant decrease of the A_y for d(d,p)t reaction is observed at $\theta_{cm} < 90^\circ$ with a smooth change of its sign at $\theta_{cm} > 90^\circ$ (Fig. 1c), whereas the proton polarization P_p passes a broad maximum (Fig. 1b,c). The zero-crossing of the $A_y(E)$ is usually a strong indication for resonant character of interaction. It is also important that the values of A_y and P_p are contradict to the well known receipts given by the theory of direct reactions: if d(d,p)t is the deuteron stripping with $l_n = 0$ then $A_y = \alpha P_p$, $\alpha \ge 1$ is to be expected.

Here an attempt is made to connect the above phenomena with other anomalies which have been discovered for A = 4 in different processes (see ⁸⁾ for references) : in the RGM-analysis of the dd elastic scattering cross sections an indication was found for a broad 2⁺, T = 0 ¹D-state at E_x near 30 MeV; besides a broad D-wave anomaly, according to the phase shift analysis of N + 3N system, there exists the 1⁻, T = 0 state at $E_x \simeq 29$ MeV; the evidences for a broad 1⁻ resonance were also found in ⁴He(d,d'd) and ⁴He($\alpha, \alpha'x$) reactions; the cross sections of photonuclear reactions ⁴He(γ ,N) and ⁴He(γ ,2d) can be described (see also ^{9,10)}) on the basis of broad overlapping resonances 1⁻ and 2⁺(¹D) at E_x around 30 - 32 MeV, and so on.

Leaning upon these facts, it is convenient to analyze the first-rank observables as the sums $C(k)P_k^1(\cos\theta)$, the coefficients C(k) being of the following explicit form¹¹⁾ for the A, in $A(\vec{a}, b)B$ reaction

$$C_{A}(k) \sim \sum_{mn} \delta_{S_{m}S_{n}} A_{mnk} \begin{pmatrix} L_{m}L_{n}k \\ 0 & 0 \end{pmatrix} \begin{pmatrix} L_{m}L_{n}k \\ 0 & 0 \end{pmatrix} \begin{cases} s_{a}S_{m}s_{A} \\ S_{n}s_{a}s_{A} \end{cases} \begin{cases} L_{m}L_{n}S_{m} \\ J_{n}J_{m}k \end{cases} \begin{cases} S_{m}L_{m}J_{m} \\ S_{n}L_{n}J_{n} \\ 1 & k \end{cases} Im(M_{m}M_{n}^{*})$$
(1)

here $\mathbf{M}_{m} = (\mathbf{S}_{m} \mathbf{L}_{m} \mathbf{J}_{m} | \mathbf{M} | \mathbf{S}_{m} \mathbf{L}_{m} \mathbf{J})$ is the matrix element (ME) of the amplitude M for a transition from a state with channel spin \mathbf{S}_{m} and orbital angular momentum \mathbf{L}_{m} to a state with \mathbf{S}_{m} , \mathbf{L}_{m} . For the polarization P in A(a,5)B reaction \mathbf{s}_{a} , \mathbf{s}_{A} are changed by \mathbf{s}_{b} , \mathbf{s}_{B} and all the primed and unprimed symbols are interchanged.

Considering the A_y^{el} on the basis of eq.(1), it is easy to see that the ME 2⁺of the types ${}^{1}D_2 \rightarrow {}^{1}D_2$ (022|M|022), ${}^{1}D_2 \rightarrow {}^{5}D_2$ (222|M|022) and ${}^{1}D_2 \rightarrow {}^{5}S_2$ (202|M|022) are not allowed in the $C_A^{el}(k)$. The 1⁻ ME ${}^{3}P_1 \rightarrow {}^{3}P_1$ (111|M|111) may contribute only through interference with the ME (112|M|112), (132|M|132), (133|M|133) and (134|M|134). But neither the known theoretical predictions nor the experimental results give 2⁻, 3⁻, 4⁻, T = 0 states in this energy range⁸. Thus the experimental_data $A_y^{el} \rightarrow 0$ at $E_{cm} = 4 - 7$ MeV can be explained in the case of isolated or overlapping 1⁻ and 2⁺ states.

The analysis of d(d,p)t reaction is complicated because of very large number of allowed ME-combinations⁶. In addition, the process may partially proceed with $\Delta T = 1$ due to isospin mixing at $E_{\chi} \simeq 30$ MeV, which concerns especially¹⁰ the 1⁻ level, and the states of giant dipole resonance of ⁴He can be involved. The first-rank observables turn to zeroes for a single ME. For the d(d,p)t reaction there are two ME corresponding to the 1⁻ resonance ($\alpha_{11} = (111|M|111)$ and $\beta_{11} = (011|M|111)$) and two ME corresponding to the ¹D-resonance 2⁺ ($\alpha_2 = (022|M|022)$) and $\beta_2 = (122|M|022)$. But according to eq.(1), the A_y should be equal to zero either for both ¹D-ME α_2 and β_2 or for both 1⁻ ME α_{11} and β_{11} con-

tribution. Moreover, the A_y is also equal to zero in the cases of interference $\alpha_{11} \alpha_2$ and $\beta_{11}\beta_2$. On the contrary, for polarization P_p the 'coherent' combinations $\alpha_{11}\beta_{11}$ and $\alpha_2\beta_2$ are allowed in the coefficient C_p(2) (which is dominating, Fig.1b), i.e. the P_p can be large for either isolated or overlapping 1⁻ and 2⁺ resonances. On the other hand the observed small values of A_y \neq 0 at E \sim 12 MeV, with the prevalence of C_A(1)⁶), are quite difficult for explanation. The possible reason is the interference of $\alpha_0\beta_{11}$ ($\alpha_0 = (000|M|000)$), $\alpha_2\beta_{11}$ and $\beta_2\alpha_{11}$, which is influenced by the large number of other also randomly phased bilinear combinations.

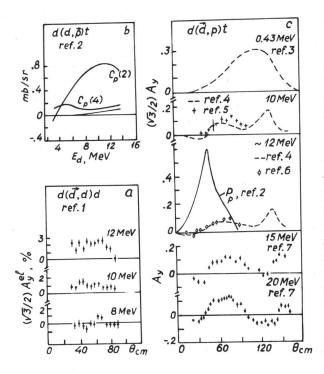


Fig.1. The first-rank data for d + d system (experiment)

In addition some features of even-rank observables⁴⁾, which are compatible with the resonances under consideration, should be briefly mentioned: the main contribution of $d_{OO}(4)$ to the d(d,p)t cross section may be due to the resonating ME α_2 ; the relation¹²) $d_{20}(1) = -\sqrt{2/3} d_{21}(1)$ is almost ideally satisfied that may correspond to the interference of resonant β_{11} with α_0 ; the $d_{20}(4)$ gives the main contribution to the T₂₀ and has a resonant-like behaviour, which may be due to interference of α_2 and β_2 with other (nonresonant?) 2⁺ ME ((022 M 222), (122 M 222)) as well as due to interference of the α_{11} with nonresonant J⁻, J>3. The analysis of the evenrank observables is also highly complicated because of many possible ME-combinations, and one has to be cautious to avoid discoveries of false resonances.

In that way the polarization phenomena in d + d system do not contradict to the existing ideas⁸⁾ about broad 1⁻ and 2⁺ resonances of ⁴He at $E_{\chi} \sim 30$ MeV and, moreover, can b. understood on that basis at least qualitatively.

References

- 1) W.Grüebler et al.: Nucl. Phys. A193(1972)149.
- 2) L.E.Porter, W.Haeberli: Phys.Rev. 164(1967)1229.
- 3) C.Petitjean et al.: Helv.Phys.Acta 40(1967)401.
- 4) W.Grüebler et al.: Nucl. Phys. A193(1972)129.
- 5) E.M.Bernstein et al.: Nucl. Phys. A126(1969)641.
- A.M.Yasnogorodsky: Reports of the 23th Conference on Nucl. Structure (Leningrad, Nauka, 1973) p.262; O.F.Nemets, A.M.Yasnogorodsky: Izvestiya AN SSSR ser.fiz. 38(1974)746;
 O.F.Nemets, A.T.Rudchik, A.M.Yasnogorodsky: Ibid., p.741.
- 7) H.E.Conzett et al.: Proc. 4th Intern. Symp. on Polarization Phenomena, ed.W.Grüebler and V.König (Birkhausser, Basel und Stuttgart, 1976) p.524.
- 8) S.Fairman, W.E.Meyerhof: Nucl. Phys. A206(1973)1.
- 9) V.N.Gur'ev: Ukr.Phys.Journ. 20(1975)1993.
- 10) J.J.Bevelaqua: Phys.Rev. C27(1983)2417.
- 11) A.M.Yasnogorodsky: Phys.Lett. B58(1975)139.
- 12) F.Seiler: Nucl. Phys. A244(1975)236.