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4.4 Coupled Channel^Description of inelastic scattering with
a Dirac Equation
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To describe nucleon scattering, Dirac equation in a coulomb field Vj,(r)

t a.V + Bm + V (r) + ̂  Bajv V (r)|l>l'(r) = EfCr) (1)
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is generalized into

^ a.V + B |m + Vg(?)| + V^(?) + B a |v.V,j,(r)| = Ei'(?) (2)
where V (r), V (r) and V,j,(r) are three complex potentials of which the real^and the
imaginary parts are approximated by a Woods^Saxon potential. In eq.(2), V (r) and
V,j,(r) include the coulomb potential, multiplied by y in V (r) : y is the anomalous
magnetic moment of the nucleon and m its reduced mass. These three potentials des
cribe the target and its excited states (by inclusion of phonon creation and annihi
lation operators in the vibrational model or an anisotropic radial dependence in the
rotational model). The wave function can be written as

where describes the target, F^.j(r) and G^-jCr) are the large and the small compo
nents respectively. Dirac equation becomes :

r  K.-i -1 u, d v°
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S.(r) = .{[v^+V^]f, + X [ a + ——i V^]g.}
1  s vJ j 2m [dr T r Tj jJ

(5)
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where V°, V°, V° are the monopole terms of V^, V , V.^,, the geometrical coeffi
cients whicS appear for a spin-independent tiansition in iAe scattering of spin 1/2
particles and K. the eigenvalue of 1 + La. An equivalent Schrodinger equation can be
written as in ref.[l]. The form is identical except that in,eqs.(3) and (4) of ref.[l],
D(r) is replaced by D(r) exp{V,j,(r)/m}.Equations(4-5)can be solved by iteration using
the integral version of the ECIS method ; eqs(4) with S£ = 0 and Tj^ = 0 ̂ re solved
to get a regular solution FjCr), Gj(r) and a purely outgoing one Fltr), Gl(r). For
that purpose, the equivalent Schrodinger equation is used (reorientation terms are
shifted in the second member in order to obtain potentials of the Schrodinger equation
independent of angular momenta). The F's are obtained by dividing^) by D(r) and
the G's.by the pecond eq.(4). With the normalisation of the wronskian
Ff(r) Gj;(r) - Fl(r) Gj(r) = X , the iteration procedure is

F^'^^(r) = 5. Fy(r) + F^(r) P [fT(r')S.^"\r')-gT(r')T.^"^ (r')Idr'
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+ F[(r) |°° [^F^(r')sf"^(r') - Gj;(r')T^"^ (r') jdr'



= 6. cTCr) + cfCr) T [Fy(r')S^''^ (r') - Gy(r')Tf''^ (r')ldr'
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+ G^Cr) F]^(r')sr^(r') - G];(r')Tr^(r') dr' (6)
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A precise evaluation of these integrals needs more complex correction terms than for
the Schrodinger equations. Computations have been done without the term and are
presented here').

We use non relativistic coulomb functions. Changing the matching point leaves the
inelastic scattering invariant. For the elastic scattering, difference of the long
range behaviour between Eq.(2) and the non relativistic coulomb equation can b^e t^ken
into account-+by mehtods already described ' . This difference includes a term V^,
and a term ^ + tfflVc of which the effect is quite the same for Z = 20 when
into account-+by mehtods already described ' . ihis dirrerence inciuaes a term Vj,

and a term ^ + l^lVc of which the effect is quite the same for Z = 20 when
y = 0 which Eorresponds to the use of relativistic coulomb functions. Therefore, the
use of y = 0 introduces more error in the result than the use of non relativistic
coulomb functions. Relativistic coulomb excitation needs a generalization of the
method^) used in the non-relativistic case because the product of the wave number by
the coulomb parameter is no longer a constant.
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