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8.49 Multi-Tilted Foil Polarization and the Signs of Nuclear Quadrupole Moments
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Following earlier work at our Laboratory on multi-tilted foil atomic polarization
and nuclear precession, we have developed in recent years a method for measuring the
sign of quadrupole moments of high spin isomers which is based on nuclear polarization
with the multi-tilted foil technique. The observation of the quadrupole precession
signal also provides a measurement of the induced nuclear polarization. A number of
such measurements as well as details of the technique have been described in various
publications.1'6) The measurement of the 14 Gd(49/2%) isomer, in particular,
constitutes the first direct observation of an oblate deformation for a particle
aligned very high spin isomer. We present here results for 134Ce(10+) from a recent
measurement where the polarized cerium isomers were embedded in a gadolinium single
crystal. The Ce measurement is of particular interest because it is the first such
measurement for an isomer which is considered possibly to have a triaxial shape.

The quadrupole coupling constant was determined as equ/h= +33(3) MHz where Q in the
nuclear moment and eq is the electric field gradient (EFG) on Ce impuritiesina Gdhost.
No direct information on the sign of the EFG is available for cerium in gadolinium;
however the sign of the EFG is known for Gd, W and Ir in Gd and is positive throughout.
It is therefore very plausible that the EFG is positive also for Ce in Gd. This
would imply a positive sign for the quadrupole moment. In the framework of the tri-
axial rotor model this corresponds to a y deformation in the range -120° <y <-30° in
the Lund convention. -7

The Ce measurement was the first instance in which this method was applied to a
state with a relatively small g-factor (g=-0.187). As the measurement requires an
interfoil travel time long compared to the mean hyperfine period, a small g-factor
implies a large interfoil separation, imposing severe constraints on the construction
of the foil stack. A special stack was developed for such measurements with the
essential feature of having the foils supported at two sides only. The sides facing
the target and the crystal are free. A schematic view of the experimental set up with
this stack is shown in Figure 1.

As a review of nuclear polarization obtained in such measurements, we present in
the table below the relevant data of all such measurements to date. We note that the
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Fig. 1. Experimental set up used in the 134Cc(10+) study.
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Table I. Resumé of polarization data

Recoil Number Interfoil Tilt Atomic Induced

State g-factor Velocity of distance angle polarization nuclear
v/c foils  pm (degrees) per foil polarization

>4pe(10")  0.728  0.018 13 300 60 0.08 0.08(3)
54Fe(10+) 0.728 0.018 17 300 60 0.08 0.18(5)
13400 10"y -0.187 0.015 9-10 1500 60 0.11(4)
13400(10%) -0.187  0.015 11 1800 70 0.13(4)
1446400 1.276  0.018 19 90 60 0.05(1) 0.06(3)
144Gd(10+) 1.276 0.018 19 150 60 0.05(1) 0.09(4)
144Gd(10+) 1.276 0.018 19 450 60 0.05(1) 0.10(4)
147:4(27/27)0.840  0.016 23 300 60 0.05(1) 0.11(2)
14764(49/2%) 0.446  0.018 25 450 60 0.05(1) 0.16(3)

The data in this table, other than for134Ce(10+), are from ref. 5.
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