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We are motivated by the recent theoretical analyses of Zakrzewski
and Delande(Z-D) on curverture distribution of chaotic quantum
levels to construct a unified theory which is capable of predicting
the nonuniversal feature of the distribution while P{I^) for
large values of the curverture K of an irregular quantum level, em
bedded in a level diagram moving as a parametric motion with A
(i.e. K = ̂), has the universal power law P{K) ~ P{K)
for K K 0 is different for different individual systems with variety of
sharpened peaks, as we have demonstrated previously. We utilize
the stochastic freqency modulation theory of Kubo who formulated
the motional narrowing of resonant hne shape in the context of
Gaussian stochastic processes. Thus, a satisfactory scheme of in
terpolating the two hmiting forms of P{K) proposed by Z-D has
been achieved.

1. Introduction

Our previous numerical investigation of the curvature distributions of complex quantum
levels moving according to a change of an adiabatic parameter (Takami and Hasegawa''^)
revealed that, although the distribution (density function) Pcur«(A') for large K values
behaves like K~^'''^^\ u = 1 ioi GOE and j/ = 2 for GUE, in agreement with the theoretical
prediction of universality due to a level-dynamical formulation by Gaspard et aP\ its peak
behavior around K = 0 diflFers greatly from one sample to another chosen in the numerical
tests (see Fig.l). This feature about nonuniversality has been one of the major clarifying
points of the recent theoretical analyses on the parametric motion of chaotic quantum levels
contained in two papers by Zakrzewski and Delande®) (in abbreviation Z-D hereafter) and
Zakrzewski et al^^. See also the preceding review in this volume®^

In this report we discuss a probabilistic formulation of the curvature distribution of levels for
a fully chaotic quantum system, where the origin of the two formulas for Pcurv{K) proposed
in Z-D will be clarified in terms of the "relative correlation length in the parameter" of
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random influence acting on the pair of moving levels: The first formula (eq. (4.15) in Z-D,
constructed as a two-level statistical model of the level dynamics) reads

Fcurv(i^) = (1)

with normalization and scaling constants and B^, and in terms of the parabolic-

cylindrical related function

- r(p) Vo

It corresponds to the shortest (zero) limits of the correlation length, implying that the level
dynamics of the pair is taking place as if it were unaffected by any other levels. For GOE

(i/ = 1), the formula yields a sharpened peak of Pcurv(A') at K = 0.

On the other hand, the second formula (eq. (3.27) in Z-D, proposed just intuitively) which
reads

Pcnr.{I<) = K{1 + B'IK'')-'^ (2)
with normalization iV^, and another scaling constant P(,, is a consequence of the Gaussian
stochastic assumption on the influence of all other levels than the pair, in the case of very
long correlation length. Note also that the Wigner type function is assumed for the spacing
distribution in both (1) and (2) (see below).
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Our theoretical basis to deduce the above results is Kubo's stochastic frequency modula
tion theory'') plus the so-called generalized Langevin method®); His concept of 'motional
narrowing' is incorporated in the short-correlation formula (1). Numerical interpolation
between the two limiting situations (1) and (2) will be exhibited.

2. Probabilistic Formulation

First, we point out that the curvature distribution Pcurv{K) can be expressed reasonably as an
integral transform of the spacing distribution for an adjacent pair of levels P,p{s) such that

/OO
F{K,s)P,p{s)ds.

•OO

Here, we may assume the symmetry property

PcuTv{-I<) = Pcnrv{K), P,p{-s) = P.p{s), and hence F(-K, ±s) = F{K, s). (4)

The probabilistic meaning assigned to the kernel function F{K,s) represents the conditional
curvature distribution associated to any pair of levels Xi and X2 under the condition that these
are neighboring and have the spacing value s i.e.

X2(A) - Xi(A) = s, (5)

where the curvature K associated to {xi,X2) is defined by

(6)

We can show the correctness of the expression (3) with the additional assignment (5) and
(6) along the line of statistical mechanical formulation by Gaspard et al (unrestricted to
the tail part, however) ̂), which should be presented elsewhere.

Our key tool for presenting the result stated in Section 1 is to investigate the characteristic
function (i.e. the Fourier transform) of the distribution/conditional distribution, namely

/OO /*®® / V
Pc.AI<) ̂ dK = 2 / $(t, s)Ps,{s)ds (7)

-OO •'0

^t,s)= r F{K,s)e'''''dK. (8)
J — OO

Then, the most important finding of Gaspard et al'^), namely the universal tail behavior of
the curvature distribution Pcurv(-ft^) can be transcribed by some simple scaling properties
of F{K, s) and its characteristic function $(t, s) as follows: Suppose that the spacing
distribution F'sp(5) assumes the power form -|- ©(s""*"^) for small s values. The scaling
property for F,

roo. . .

F{K,s) = \K\~^f{Ks) such that / f{k)k^'dk < oo, n <-1, (9)
J 0
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or, that for $
t

$(t, s) = (^(-) such that /
s  Jo

assures the universal tail behavior of Pcurv(f^) as

-(f>{t)\dt < oo

lA'l-oo

PeuAK) —»

The two single-variable functions / and cj) are related through

_ [°° fn.\ Jkt _ 1^1 f°°

At this moment, we must admit our ignorance about a deeper meaning of the scaling
property (9) or (10). But, assuming its validity, we specialize to two typical examples
which we designate as

(A) Case of the fast modulation ('motional narrowing' limit),

(B) Case of the slow modulation (Gaussian limit).

A. the fast modulation:

^{t) = Re (1 - it)-£ f{k) =

Note that by means of a Laplace transform and its inversion

fOO 1

1  rc+ioo ezk [ for Re1  /•<=+' for Re

27rz Jc—io (1 + ̂)
rdz = r(|)

 A: > 0

for Re A: < 0

B. the slow modulation:

<P{t) = e2^\ f{k) =

It is now clear how these two prototypes lead to the Z-D formulas (1) and (2) by adopting
the Wigner type spacing distribution function

P,^{s) = A,s''e-'"l^''\ (15)

and by choosing the normalization and scaling constants adequately: It is immediate to
obtain the formulas (1) and (2) by inserting (13) and (14), respectively, into the integral
transform (3) of the Wigner function (15), where the scaling property (9) plays the decisive
role.
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3. Generalized (friction-retarded)Langevin Equation

Kubo®^ discussed a retardation effect on the friction of the Ornstein-Uhlenbeck Brownian

motion by writing its Langevin equation as

^  / 7(i - t') u{t')dt' +
CIZ J—oo lit'

The necessity of such a generalization as expressed in the above form stems from the non-
white nature of the random force R{t) (i.e. R{t) is not 5-correlated, or its power spectrum
nonconstant). Thus it modifies the ordinary fluctuation-dissipation relation between the
damping constant and the strength of the white noise such that

f T(r) = mnc + r)> e-'-Vr. (16)
Kubo called this the fluctuation-dissipation theorem of the second kind.

In order to apply this theory to the present problem of describing the variant correlation
length, we first write down a set of two-level equation of motion in accordance with the
level dynamics^^ supplemented by a friction term and a random force:

dxi .

dt ~ '

} = - t') Pi{t')dt'+ Ri{t)
t  UX{ J—oo

\L P
where Vixi,X2) = . (see and Riit) {i = 1,2) is assumed to arise from the

(^1 ^2)
gradient of the potential ̂ V{xi,Xn) {i = 1,2).

n^t

Then, let us take the center-of-mass coordinate system:

X = 1(2:1+0:2), P = PI+P2 QgN
a: = 2:2-2:1, p = |(p2-Pi)

This enables us to separate eq. (17) into two sets, and the one for the relative coordinates
{x,p) is written as

with the fluctuation-dissipation relation (of the 2nd kind) given by

roo foo

J  7(r) = 2/? y < r{t) r{t + r) > e"'"

Here, /? denotes the inverse temperature of the equilibrium surrounding the pair of levels
which should be defined in the starting level dynamics, and the factor 2 represents the

inverse reduced mass (note that each level has a mass unity in our level dynamics). The
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residual force r in (19), given by arises certainly because the pair of levels 1 and
2 interact with the other levels, n 7^ 1,2, for which the orthogonality < Ri{t)Rj{t') > = 0,
i rfz j, is assumed. Then, the F-D relation (20) recovers its original form

too too

/  7(r) e-'"^dr = p < Ri{t)Ri{t + t)> e-'^'dr.
Jo Jo

We are now ready to compute the characteristic function of the conditional curvature
distribution and hence, with the aid of Psp(s) in (15), the desired function Pcurv(-fi') with a
variant correlation length.

4. Stochastic Modulation Theory for Curvatures

Before going, we argue about what physical meaning should be assigned to the 'time't in
the Langevin equations (17) and (19). Ip the starting level dynamics, e.g. in Yukawa's
formulation^^''), one deals with the eigenvalue problem of a Hamiltonian matrix

H{\) = Ho + APi (21)

to ask a change of its energy eigenvalues with respect to A. Here, the parameter A is

dimensionless as far as Hq and Hi have the same (energy) dimension. Change the parameter

A to t in the same expression but now Hi being regarded as a dimensionless quantity:

Hit) = Ho + tHi.

Then, the parameter t now represents an energy variable. Accordingly, in eqs. (17) and
(19), the momenta p's are dimensionless and their time derivatives are of the dimension

[energy"^]. At the same time, the choice of the dimensionless perturbing matrix Hi implies
that one now has a dimensionless Hamiltonian function for the level dynamics, which is

convenient.

It is now possible to identify the curvature K for the pair of levels 1 and 2 with the

right-hand side of the Langevin equation (19):

^ ̂  -1') + r(t) = K(t) (22)
This is a fluctuating quantity against energy with its dimension [energy"^]. It is consistent
with the starting deflnition of the curvature (6) apart from the dimensional understanding.

Our task is to calculate the characteristic function "F(t, s) of the curvature distribution
under the condition specified by (5) such that $(t, s) = < = s >. Here, the
variable t is the one conjugate to the curvature K in defining the characteristic function

i.e. Fourier transform of Pcurv(A', s), but now we assert that this variable t is identical to
the time variable of the Langevin eq. (19). The reason for this identification can be seen
from Kubo's another context of the Brownian motion theory for line shapes, namely the

'random frequency modulation theory He discussed a practical method to compute the
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Figure 2: Curvature distribution for GOE statistics obtained from the intermediate char
acteristic function eq. (26) (/3 = 7r/2): a = 0.5 (thin line), a = 1.0 (dashed line), a = 2.0
(thick line).

shape of the frequency spectrum in the mode decomposition of a dynamical variable x into

Xu to satisfy j^x^ = itjx^ by proposing to treat this equation as a stochastic equation, or
to regard the frequency w as a stochastic process.

Following Kubo's prescription to replace e'"' by exp(i /J uj{t')dt') in the random frequency
modulation process, we do make the same treatment of replacing by exp(i /J K{t')dt')
which is regarded as a stochastic process, and which is inserted into the definition of the

characteristic function $(t, s) = < e'^'|a:(t) = s>.

Near the equilibrium of the 2-level dynamics (pe = Ti = ^ for the relative
coordinate only), we can write as

where

K{t) = K + = and K=J^-^p,

roo roo

< r > = 0 and 7 = y j{T)dT = j < ̂it) r{t + r) > dr,

implying that the process is stationary. If we further make the assumption that the process

r{t) is Gaussian, we can compute $(t, s) as follows:

< exp(i f K{t')dt')\x{t) = s> = < e'^^^\x{t) = s> < exp(i / r(t')dt') >
Jo Jo

=  "P ["5'' ■
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Figure 3: Curvature distribution in a logarithmic scale for GOE statistics obtained from
the intermediate characteristic function eq. (26) {P = 7r/2): a = 0.5 (thin line), a = 1.0
(dashed line), a = 2.0 (thick line). Each straight part corresponds to the K~^ line.

We further follow Kubo's ansatz of an exponential decay of the auto-correlation function

of r{t) in the exponential, i.e.

1
< r r{T) > = - < R\Ri{t) > = hence 7 = /IA^Tc (24)

which leads us to an expression

s) = exp -^r,¥-^rc{t-re(l-e-'/^0} ■

An inspection of this formula shows that by setting

A = - and Atc = a hence Tc = as, (25)

the function $(t, s) is indeed a single function (pitjs) with the two dimensionless parameters
p and a:

') = «;) = - f ■ P6)

Here the parameter a represents the relative correlation length in accord with Kubo's

parameter to measure the degree of broadening: In the limit a —> 0 (motional narrowing
limit), <^(t) reduces to (13) with t replaced by 2t//?, for which the expression (1) results
with the scaling constant = \P<Ju. In the opposite situation a^ >• P~^ (Gaussian
limit), reduces to (14) with replaced by ̂ aH"^, for which the expression (2) results
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with B'^, = Figs. 2, 3 show our numerical studies about the intermediate situation
between them.

Thus, our understanding of the nonuniversal feature disclosed in the previous numerical
experiments on the parametric motion of levels for different systems is the variant degree
of the correlation length of an avoided crossing of the individual pair, which we now believe
to be true: The short correlation (rapid modulation) in Case (A) and the long correlation
(slow modulation) in Case (B) indeed account for the two pictures illustrated respectively
in Fig. 1(a) and 1(b).
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