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Quantum Optics View of Neutron Interferometry
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Light and matter wave interference experiments can be analyzed in terms of quantum optics. Correlation and coherence
functions provide a proper basis for the description of various coherence phenomena. Squeezed neutron states have been
identified in the course of novel postselection experiments which indicates that interference phenomena have to be treated
in phase space rather than in ordinary space only. A description in terms of Wigner functions visualize such non-classical
quantum states and show the fragility of such Schrodinger-cat-like states against any kind of dissipation, which sheds light
on the quantum measurement problem. New projects like neutron Fourier-spectroscopy are intended to broaden the
interferometric methods towards condensed matter physics applications.
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§.1. Introduction

Quantum optics has been developed primarily for light
optics where impressive progress in  physical
experimentation and novel applications has been achieved.
9 Over the last decade it has been shown that quantum
optics formalism can be transferred to particle optics where
characteristical quantum optical phenomena can open a
new horizon for scientific work. *” The identification of
Schrodinger-cat-like states of massive particles and related
squeezing phenomena encourages on one hand new
epistemological discussions of quantum mechanics and on
the other hand opens new possibilities for fundamental and
applied research.

Neutron interferometry has become a mature technique
for the realization of many quantum optical experiments
for massive particles because a neutron carries well defined
particle properties and exhibits the wave-particle dualism
in any interference experiment. ®”  Perfect crystal
interferometry uses a Mach-Zehnder geometry with a beam
separation of several centimeters. The perfect arrangement
of the atoms in a silicon single crystal is used to achieve
coherent beam splitting, diffraction, and superposition.
(Fig. 1) From simple symmetry considerations it can be
understood that the wavefunction for the beam in forward
direction (0) behind the interferometer is equally composed
of wavefunctions arising from beam paths I and II, which
causes a complete modulation of the interference pattern as
a function of a phase shift applied to the split beams.
Nuclear, electromagnetic, and gravitational interactions, as
well as topological effects can cause such a phase shift.
Novel results of such measurements will be shown in
separate contributions to this conference. '*'?

Over the last years, interferometry based upon diffraction
from artificially made gratings and layers has been
developed which broadens the scope of neutron
interferometry and becomes a sensitive testing method for
microstructured materials. '>'¥ Additionally, it should be
mentioned that Larmor interferometry is another well
developed interferometric method which is used in the
form of spin-echo instruments in many neutron
laboratories. '*'” The expert in the field will notice that
the quantum mechanical description of a coherent neutron
beam by means of coherence functions is rather similar to
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the description of the static and dynamical behaviour of
atoms in condensed matter by using the van Hove
correlation functions. 2%?"

§.2. Coherence Properties

In close analogy to the light optical formalism we define
the coherence properties of the beam. "’ The first order,
two-point-two-time autocorrelation function relating the
physical situation at (r, t) and (r’, t”) is defined as:

GO(rt;r 1) = Tr{py *(r,t)-w(r',1")},
(2.1)

where p denotes the density matrix which describes the
spatial profile of the beam and its time-dependence in the
case of a pulsed beam. y is the solution of the time-
dependent Schrodinger equation

= in ¥,
a

Hy(r,1) (2. 2)

which has the general form
w(r,t) < Ja(k,a;k ye'* - dkdw, . (2.3)

In free space, kand wy are related by the dispersion relation

@, = hi’/2m. Spatial boundary conditions do change k, but
not ay, which temporal ones change ( diffraction in time
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Fig.1. Sketch of a perfect crystal neutron interferometer.
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Here we focus on time-independent (stationary) effects,
which simplifies the treatment considerably. As in the
distinction between elastic and inelastic scattering in
condensed matter physics, *>*" the stationary situation is
obtained by putting ¢ — t’= 0. @ now becomes an "Eigen-
"value of the Schrodinger equation and the density of .-
states can be defined as g(k) = la(k)]*dk. The intensity
behind the interferometer is given by p, and by the
wavefunctions in that region R, which are composed from
wavefunctions arising of both beam paths

vo(R) =y (N +y" (),

where r and r' are the optical path lengths to reach the
point R along paths 7 and //, respectively. This gives

I, = Tr{pys (R OV, (R0} = GV (r, 1y, 1) +

+GO i 1) +2Re GV (150, 1)
(2.5)

(2.4)

GV (r,r)and G (', r') denote the intensities when beam
path 7 or beam path /7 is open only ( /; and 1,). GV (r, r")
will be a complex function in general

GO (r,t;r 1) = \G(l)(",t;r',t')‘eiz(r,t;r',t')a
(2.6)

which defines in its normalized form

GO (r,t;r,1")

TV i )=

(2.7)

the first-order correlation (coherence) function of the
related beams. It can be expressed as the Fourier transform
of the normalized momentum distribution function

TO®r,r') =T (4) = 7)™ [ g(k)e™ “dk

(2.8)
This gives
Iy= 1+ 1+ 21, - I, [TV (4)|cos 1(4),
(2.9)

where 4 = r — r' denotes the difference in the optical path
lengths along beam paths / and /7. The interference fringe
visibility becomes

V= 410 — Ly _ 2‘V]1 e II““)(A)‘, (2.10)

[Max +[1vlin [l +]2

where [["(4)| is, misleadingly, often called "degree of
coherence". We will show later on that a beam can be
completely coherent even when |[[¥"’(4)| becomes zero. The
characteristic widths of that function [[¥"(4)| define the
coherence lengths
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Fig.2. Measured and calculated (dotted) particle distribution

function for mean particle number N = 2 (above) and N =50
(below).
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Fig.3. Different phase shifters for phase shifts into different
directions.

where i = x, y, z. In case of Gaussian shaped momentum
distributions the coherence functions become Gaussian
shaped too, and the momentum widths 8k, and the
coherence functions fulfill the minimum uncertainty
relation:

1

Ak =—. (2.12)
2

Such a state in quantum optical terminology is called a
coherent state which has the feature of a Poissonian particle
distribution



Quantum Optics View of Neutron Interferometry

a(4)

«

00 Predicted
® B/ Data
o Ti Data

S
3

60

IS)
[

o
S

g (k) (arb. units)
Relative Contrast (%)

270 268 266 0 400 800 1200
X (radians)

~—  momentum (A~

—— predicted
« measured

I (az)IT(0)

: N\
ol . L~
002 000 002 0 100 200 300
kz(R) 52 (&)

Fig. 4. Measured momentum distribution and measured

coherence functions for the longitudinal (above) and vertical
(below) direction.
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Fig.5. Wave packet shapes in ordinary and momentum space at
low (above) and high (below) interference order.
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Fig.6. Squeezing of the momentum distribution for a three-

(above) and a four-plate interferometer (below) for 6k /&y =
5%.

=N 5
P(N):We_ .

as it has been measured recently. > ( Fig. 2)

Differently shaped phase shifters ( Fig. 3 ) cause
momentum changes into different directions and
differences in the optical path lengths. The boundary
conditions of quantum mechanics determine the spatial
phase shifts for the different cases ( y(4) = k-4):

(2.13)

Longitudinal: D, = -2n Nb. Dy/k
Transverse: D, = =21 Nb. Do/k
Vertical: D, = -2 Nb. Dotan (p)/k

N denotes the particle density, 5. the coherent scattering
length, ¢ the tilt angle, and D, the thickness of the phase
shifter. Many measurements of the coherence function
have been made in the past which are summarized in a
recent paper. >? Figure 4 shows the measured momentum
distribution in the longitudinal and vertical direction when
a twin-monochromator is used in front of the
interferometer and it shows the visibility of the interference
pattern as a function of the spatial phase shift. The solid
lines are the mutual Fourier transforms which verify eq.
(2.8). Thus certain coherence properties can be attributed
to any beam by its momentum distribution and can be
measured directly in an interference experiment. The
coherence lengths appear as the widths of the inner (0-
order) Fresnel zone of the beam.

§.3. Schrodinger-Cat-Like States

These are states where an entity occupies at the same
time several spatially well separated regions. Such states
have been identified in the course of recent neutron
interferometric investigations. "> They appear when the
spatial phase shifts become larger than the coherence
lengths ( A >> A.). In this case, the interference fringes
disappear ( | ['(A) | — 0) and a marked modulation of the
momentum distribution appears. In the case of Gaussian
distributions the spatial intensity distribution reads as
eq.(3.1). and the related momentum distribution becomes

I1,(k) oc exp[—(k - k,)? 28k 1[1 + cos(kA)],
(3.2)

which is shown for typical cases in Fig. 5. When one
calculates the widths of the related distribution functions
((Ax)?) = (%) — (x)? and ((Ak)*) = (K*) — (k)*, one notices
that ((Ak)?) can become smaller than the coherent state
value & (at A = 0), where A,k =1/2 is fulfilled. This
means in quantum optical terminology interferometric
squeezing®®®  which even can be strengthened by
multiplate interferometers. * ( Fig. 6) One emphasizes
that a single coherent state (A.0k =1/2) does not exhibit
squeezing but a state created by superposition of two

47

I,(x) = [ (x) + p(x + &)

= exp[—x?/28* ]+ exp[~ (x + A,)* /28] + 2exp[ - x* /48] x exp[— (x + A,)? /48 Jcos(kA),

(3.1)
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Fig.7. Wigner functions at low (above) and high interference
order (below) without (left) and with fluctuations (right).
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Fig.8. Wavefunction structure from different phase shifters.

coherent states can exhibit a considerable amount of
squeezing. These highly non-classical states are made by
the power of the quantum mechanical superposition
principle.

The existence of such neutron states has been verified
recently by a novel momentum state postselection
experiment.”” First it has been shown that an interference
pattern in the region A )) A. can be restored when a narrow

momentum band is filtered out of the beam behind the
interferometer by means of an additional analyzer crystal®”
and it has been shown that a modulation of the momentum
distribution appears when this analyzer crystal scans the
distribution function®  These highly non-classical
Schrodinger-cat-like states are rather fragile against any
kind of fluctuations and dissipation effects as we will show
in the following chapter.

§.4. Wigner representation
In quantum optics many phenomena are visualized by

Wigner quasi-distribution functions which are defined
31,3)
as

+c0

1 P x' b=
W, (kx) = 5= [ = piCe+ Dy (x = D),

-0

(4.1)

where in our case
w,(x) =y (x)+y(x+4),

which gives eq.(4.3). Integration over the momentum
variable gives the spatial distribution (eq. (3.1)) and
integration over the spatial variable gives the momentum
distribution (eq.~(3.2)). Typical results are shown in Fig. 7.
32 When fluctuations of the phase shifter ( SV or D, ) are
included, one notices that the wiggle structure in between
the separated peaks is more sensitive at high interference
order than at low order. This phenomenon is caused by the
statistical fluctuations of the interaction acting on the
neutrons inside the phase shifter. It causes a decrease of the
coherence and a transition from a quantum state to a
mixture. From that consideration upper limits for the
separation of massive (Schrodinger-cat) systems due to
unavoidable zero-point fluctuations can be given. Thus the
extension of quantum "Gedanken" experiments to
arbitrarily large distances is unphysical.

(4.2)

§.5. Boundary Induced Revival Limits

In various interferometric phase-echo experiments it has
been shown that the original contrast can - at least
approximately - be revived when a large phase shift (A, ))
A.) is compensated by another one (A, = A ). 3339 A more
accurate treatment shows that a complete revival of the
original wavefunction becomes impossible in principle due
to unavoidable splittings of the wavefunction in case of any
interaction.®” (Fig. 8) This indicates that the complete
wavefunction keeps information about all details of
interactions the system experienced between the source and
the detector. A theoretical treatment has to include the
packet structure of the wavefunction and the change of this
structure due to the dispersive action of any interaction.

W.(x,k,A)=W(x,k)+W(x+Ak)+2W(x + %,k) cos(A - k)

2
oc exp| — (ko)

25%*

2 2
exp(— 5);7) +exp| — (x*4) +2exp

_("J;—A/ZX cos(A - k)

28
(4.3)
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Fig.9. Sketch of an experimental set-up for elastic Fourier
neutron spectroscopy.
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Fig. 10. Comparison of standard and Fourier-spectroscopy.

An infinitesimally narrow momentum band only can cross
a barrier without losses which generates a more
monochromatic transmitted wave which results in a larger
coherence length which. step by step. will reach the
dimensions of the barriers causing that they act collectively
(i.e. enhanced) on the wavefunction. This causes distinct
energy bands inside the periodic structure and results in
Bragg-like diffractions,’® which underlines the statement
that a complete revival of the wavefunction behind an
interaction region becomes impossible due to typical
quantum effects and it shows that irreversibility is a
fundamental property of nature. >’

§.6. Applications: Fourier Spectroscopy

Coherence properties and phase measurements are the
basic features of Fourier spectroscopy and holography.
Equation (8) shows that the measurable coherence function
is given by the Fourier-transform of the momentum
distribution, and from general scattering theory *'*® one
knows that the angular (momentum) distribution after
elastic interaction can be written as a Fourier-transform of
the related van Hove correlation function

Z_g = S(Q) o« [G(4,0)¢%da.  (5.1)

Taking into account the momentum distribution of the
incident beam g(k), which gives I'o(4) and the beam
attenuation due to parasitic effects, one can measure G(A4)

directly*”:

(4 _ ->p -3.2
m_e +(1—e )G(A). (6.2)

The results in Fig. 4 demonstrate indirectly this feature.
Figure 9 shows a sketch of a corresponding set-up. A
similar situation exists for time-dependent effects where
recently Summhammer et al.*"’ have shown how multiple
photon exchange between the neutron and an oscillating
field can be measured by a temporal Fourier method. In
contrast to ordinary Fourier spectroscopy, the momentum
(energy) exchange in the target has to be small compared to
the momentum (energy) widths of the beam (Fig. 10 ).
Thus a broad incident spectrum is favourable for Fourier
spectroscopy, which increases intensity and the spatial and
temporal resolution. Related experiments are in progress.
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