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Neutron Interferometry in Non- Inertial Reference Frames
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The phase shift of a neutron in an interferometer containing uniformly accelerating matter is studied theoretically using
semiclassical techniques. Both a neutron source at rest and an inertial source instantaneously comoving with a slab of
matter are considered, and the results are compared with those obtained assuming a constant gravitational field in the
same geometry. It is shown that the interferometric phase difference is dependent on the position of the matter in the
interferometer and velocity of the matter relative to the interferometer at the time the neutron is detected. Two
consequences of this conclusion are: (1) the phase difference measured by an interferometer containing samples of matter
of differing types that are accelerating or in a gravitational field will apparently be affected by the order of the samples due
to the position-dependence of the phase shift caused by each sample, and (2) for matter accelerating in an interferometer
at rest the phase difference will be time-dependent. Experiments designed to measure these effects are described.
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One of the fundamental concepts of physics is the
equivalence principle- the idea that the effects of gravity
and acceleration on the trajectory of a classical particle are
locally indistinguishable. In the realm of classical physics,
experiments have verified the validity of this idea to very
high precision.”” A way to state the analogous idea for
quantum mechanics is that the wave function of a quantum
mechanical system in a uniform gravitational field g is
indistinguishable from that of the same system uniformly
accelerated with acceleration -g. As the wave function is in
general complex, it may be written as the product of two
functions, a real probability amplitude and a complex
phase. It has been demonstrated that the probability
density of neutrons in the Earth's gravitational field
follows the same parabolic trajectory as a classical particle
of the same inertial mass,” establishing the equivalence of
inertial and gravitational mass with regards to quantum
mechanical probability amplitudes with an uncertainty of 3
parts in 10*.

The question of the equivalence of gravity and
acceleration on quantum mechanical phase is more subtle,
as the phase of a particle has no classical analog. Since
detectors in quantum mechanical experiments involving
massive particles are particle detectors and thus measure
probability densities, the phase is not directly measurable.
It is, however, indirectly accessible in the form of
interferometric phase differences as have been observed for
neutrons,” electrons,” atoms,” and more recently,
molecules.” Since the quantum mechanical phase is
observable only in the form of phase differences, it is the
effects of gravity and acceleration on these phase
differences rather than on the absolute phase of the wave
function that one would expect to be indistinguishable.

For neutron deBroglie waves, the phase difference due to
gravity has been studied by tilting a silicon perfect crystal
interferometer at various angles with respect to the Earth's
surface in a series of experiments.”'" Similarly, the phase
shift due to constant acceleration has been measured by
driving a similar neutron interferometer sinusoidally and
taking data stroboscopically at the endpoints of the motion
for various frequencies.'? In both of these experiments the
phase of the interferogram was determined by rotating a

slab of matter in the two subbeams of the interferometer.
Both experiments agreed with the equivalence principle to
within a few percent, but later, more precise
measurements' ' of the gravitationally induced quantum
phase shift have shown some interesting discrepancies at
the 1 percent level. Neither experiment was sufficiently
precise to measure phase effects due to apparent couplings
between gravity (or acceleration) and the optical potential
of the material slab or to detect terms beyond the first order
ing. It has been recently suggested '* that the equivalence
principle may not hold in higher order for these effects. It
is the calculation and measurement of these effects that is
the goal of this work.

In order to compare the effects of acceleration and
gravity, we consider the simple theoretical interferometer
shown in Fig.1, consisting of a source emitting a particle
with initial kinetic energy & and momentum p, = fk, in

the source frame, a slab of material with constant optical
potential Uy and thickness d in path II of the interferometer,
and a detector. In order to neglect any time the neutron
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Figure 1. A schematic diagram of the theoretical interferometer
geometry used in calculation. This geometry allows curvature
effects to be neglected.
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spends traveling horizontally, the lateral separation
between paths I and II is assumed to be negligible.

In order to calculate the semiclassical phase shift in this
interferometer we integrate the Lagrangian of the system
along the classical subbeam trajectories in the
interferometer' “'* in the source frame. We first consider
the case of a uniformly accelerating slab in conjunction
with a comoving accelerating source. Instead of treating
the Lagrangian by inferring a potential based on the
trajectory for an accelerating source (a method which
essentially assumes the equivalence principle) the
Lagrangian is modified by the Galilean coordinate

2
transformation z' = z - g_;_ so that the free particle
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accelerated frame. Although this method yields a different
answer for the phase accumulated in each path than the
method using the Lagrangian equivalent to that due to
constant gravity, the important, measurable quantity, the
phase difference is the same and is given by
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where zj is the position of the slab. The solution of the
time-dependent  Schrodinger equation  (neglecting
reflection) reduces to this expression if the neutron is far
from the turning point of its classical, parabolic trajectory
in the accelerated frame.

The case of an accelerating slab in a beam produced by a
source at rest is more complicated, and so is treated only to
leading order in the optical potential U,. If the position of
the slab in the source frame as a function of time is

1
Zo+7 gt?, the phase difference is
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where 7 is the time at which the particle is emitted by the
source (related by geometry to its time of detection 7). Note
that while this expression is valid to the stated order, it

1gnores essential physics. When the neutron enters the
accelerating slab, its frequency is Doppler shifted due to the
motion of the slab boundary, and when it exits it is again
Doppler shifted as has been discussed previously in the
literature in discussions of the neutron Fizeau effect. '*'”
However, these Doppler shifts do not exactly cancel here as
they do for the Fizeau effect, since the speed of the slab
boundary when the neutron exits the slab is different from
the speed when it entered. This difference will manifest
itself in higher orders in the optical potential as a loss of
interference contrast and a dependence of the phase on the
position of the detector. This assumes that the neutron is
only affected by the motion of the boundaries of the sample,
not by the motion of the nuclei comprising the sample.

The situation of a uniformly accelerating Mach- Zehnder
interferometer in conjunction with both a comoving and an
inertial source has been discussed previously.?” Although
the geometry considered and the method of calculation
used differ, this previous work also shows that acceleration
of one component of the system relative to another
introduces a time-dependence into the measured
interferometric phase.

If the phase differences given by eqs.(l1) and (2) are
expanded in a Taylor series, permissible by the same small
optical potential and acceleration which enable the use of
semiclassical methods, both contain terms proportional to
Uyng. These terms we refer to as “coupling terms”. If two
slabs S1 and S2 of differing material are placed in one path
of an interferometer in any of the situations described in
this paper, the phase shift measured will vary with the order
of the slabs (first S1 then S2, or first S2 then S1) due to
these terms. This non-commutative effect is surprising and
has not yet been observed experimentally.

The reason for this apparent coupling between the
neutron-nuclear optical potential and gravity can easily be
seen from the quadratic form of the dispersion relation for
the neutron. The spatially-dependent index of refraction of
a neutron traversing a slab of matter permeated by the
gravitational field is

U, + mgz %
n(z):(l—o_), (3)
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(4)
to second order in the potential energy. Thus, the phase

shift,
AD = [ kgn(z)dz , (5)

contains a term proportional to Uyngz that we refer to as a
“coupling term”.  To date, neutron interferometry
experiments have only been sensitive to the linear terms.
An experiment to measure the phase shift due to the
apparent coupling of the gravitational and neutron-nuclear
optical potentials seems difficult at present. Such an
experiment is described in Fig.2. Two identical slabs of
matter are placed so that one is in the horizontal portion of

n(z)=1-
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Figure 2. A schematic diagram of the experiment to measure
the phase shift of the neutron due to the combined action of
matter and gravity.
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Figure 3. A schematic diagram of the experiment to measure
the phase shift of the neutron due to the acceleration of
matter.

path I and the other is in first position A and then position
B in path II of a tilted neutron interferometer. A thin phase
flag is rotated to generate interferograms and the phases of
the interferograms observed for the slab at positions A and
B are compared. The slab in path I is again used to prevent
loss of contrast.?"’ Even considering the optimal situation
of using our largest interferometer and slabs made of
crystalline beryllium (the element with the largest thermal
neutron scattering length density) 2.5 cm thick (half of the
interferometer blade separation), the expected phase
difference as determined using the WKB approximation is
only 0.2 mrad. Due to phase stability considerations, our
current experimental resolution is limited to approximately
1 mrad. Further refinements to the experimental setup,
such as manufacture of a much larger interferometer, are
necessary before this experiment can be attempted.

We are at present assembling the apparatus at MURR for
an experiment to test the validity of eq. (2). The
experiment will be configured as illustrated in Fig.3.
Identical sapphire crystals 1 cm thick are placed in each
path in a LLL perfect silicon crystal Mach-Zehnder
neutron interferometer. The crystal in path II is driven

sinusoidally along a line with an amplitude of motion of
about 1 cm and a frequency ranging from 0 to 30 Hz by
means of a stepper motor attached to a pair of crossed linear
bearings while the crystal in path I remains fixed. The data
are then collected by time-of-flight methods synchronized
with the motion of the first crystal, and time-dependent
interferograms will be measured. A thin aluminum phase
flag will be set to maximize the amplitude of the time-
dependent phase oscillations. The expression (2) for an
inertial source and an accelerating sample of matter will be
tested against the data at times corresponding to the
turning points of the motion.

Since there are identical slabs in both paths, there will be
no loss of contrast due to longitudinal coherence length
effects.””) The slabs should have no effect on the phase
difference except those introduced by the motion of the slab
in path II. To the anticipated resolution of this experiment
this phase difference is proportional to the difference in
time which the neutron would spend in each slab or,
equivalently, the different effective thicknesses of the slabs.

The time dependent phase shift expected can be
calculated for the whole period of oscillation by the same
techniques. If the position of the slab in path II as a
function of time is zotA4sina#, then the resulting
interferometric phase difference is

_ AdwU, sin wt,(T).
~ hg,sin® 6,

AD(T) . (6)

where 4 is the amplitude of motion, @ angular frequency of
oscillation, and 65 the Bragg angle of the interferometer.
The time t,(7) is the time at which the neutron enters the
slab in path II, given by

mL
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where T'is the time at which the neutron is detected and L is
the path length along path II from the first blade of the
interferometer to the detector. Here 7in eq. (2) corresponds
to the time when the neutron enters the interferometer at
point A. This leads to an interferogram of the form

1(7) - 1. lco{Adon 'sm at,(T) . ¢0) ’
2 2 he, sin® 6,
(8)

where ¢ is the offset phase set using the aluminum phase
flag. This predicted interferogram is illustrated in Fig.4 for
a number of different frequencies.

Since the phase of the interferogram is a periodic
function with the same period as the slab motion, it can be
Fourier decomposed into harmonics of the slab oscillation
frequency. In this way the predicted interferogram for this
experiment can be rewritten
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Predicted Interferograms for Oscillating Sample
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Figure 4. The time-dependent interferograms for the
experimetal arrangement of Fig.3 predicted by eq.(8). The
offset phase is set to -m/2 to maximize visibility at low
frequency.

Relative Strengths of Harmonics

1:24
1.0 4
0.8 ﬂ
0.6
0.4 o
024

N

0.0 +—- et Se— T N —— 4o

02 4
0.4
056
-0.8

Relative Amplitude

0 5 10 15 20 25 30 35 40

Frequency [Hz]

Figure 5. The relative strengths of the harmonics of @in eq. (9).
The offset phase is set to -m/4 to equalize the strengths of the
even and odd harmonics and the amplitudes are nomalised.
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For the described experiment, b = 0.1173 s. The relative
strengths of the various harmonics as a function of
frequency is shown in Fig.5. Since the strengths of a
harmonic component is related to the transition
probabilities of the neutron to states where its frequency
has been modified by the addition or subtraction of that
harmonic of the oscillation frequency, the experiment also
has an interpretation in terms of quasi-stationary states 2
and phonon exchange similar to that of the recent
multiphoton exchange experiment.?**%

The nonlinear form of the index of refraction for
neutrons leads to an apparent coupling between the
neutron-nuclear optical potential and gravity or
acceleration in the phase differences measured with a
neutron interferometer. Although small, these effects
should be visible for a neutron interacting with an

accelerating slab as described in this paper. The
equivalence principle is satisfied theoretically to the
accuracy of the semiclassical techniques used. If the source
and the slab are not comoving the interferometric phase
difference is found to be time-dependent, an interesting
kinematical effect unrelated to the equivalence principle.

Periodic motion of a slab in one path of an interferometer
produces a time-dependent interferogram that can be
decomposed into harmonics of the slab motion, suggesting
that the frequency of the incident beam is chirped by
harmonics of the frequency of the slab motion due to
interaction with the slab.
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