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Unique Analysis of Neutron Specular Reflection Measurements
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A recent proposal to determine the amplitude and phase of the reflection coefficient in neutron specular reflection
experiments is generalized and discussed with regard to its applicability. It is shown that a phase determination is only
possible if the magnetic reference layer is sufficiently thin, otherwise averaging due to the finite energy width of the beam

will destroy the phase information.
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§.1 Introduction

The analysis of surface profiles by x-ray and neutron
specular reflection is of scientific and technological
interest."™ Here the reflectivity, measured as a function of
the wave number g of the incident beam, is used to
determine the scattering-length density profile of the
surface and thus the corresponding matter distribution.

Specular reflection can be formulated as a one-
dimensional quantum-mechanical scattering problem (Fig.
1) characterized by the complex-valued reflection and
transmission coefficients R(q) and 7(q), respectively. The
determination of the scattering-length density profile from
the knowledge of R(gq) is a paradigm of an inverse
scattering problem originally solved by Marchenko.”
Specific solutions applicable to specular reflection
experiments have been given by Kay® and later by Moses
and de Ridder.”

Although the formal solution of the one-dimensional
quantum-mechanical inverse scattering problem has been
known for a long time, applications and numerical
solutions have only recently been discussed.*'” The main
reason for this appears to be the fact that knowledge of the
full complex reflection coefficient (modulus and phase) is
required in order to obtain unambiguous inversion
results.!*'®  Standard reflection experiments, however,
yield only the modulus of the reflection coefficients and
consequently do not allow extraction of surface profiles
uniquely without further information (usually a model
simulation). This is the so-called phase problem known
from diffraction analysis'’® which has so far prevented
the model-independent analysis of reflection data.

Several papers dealing with the phase of R(g) have
appeared in the last years.'*'%**” Focussing on neutron
specular reflection, we mention three different proposals
for an actual phase measurement: i) The reference layer
method where one gains information on the reflection
phase via the interference between the reflections from a
known reference layer and the surface profile under
investigation; this method is used in optics but can also be
applied to neutron reflectivity measurements.”*** ii) The
interferometric Lloyd's mirage technique which allows the
determination of the reflection phase from the interference
with a coherent reference beam.?*>" iii) The measurement
of the dwell time which is related to the reflection phase.'”
Recently, a very promising scheme using a magnetized
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reference layer for polarized neutrons has been put forward
independently by two groups.***®  So far no proposal has
been implemented experimentally.

In the present paper we discuss a general method of
determining the reflection phase using polarized neutrons
and a known external magnetic field. The superposition of
the magnetic interaction of the neutron and the unknown
neutron optical potential of the sample generates an
interference term which contains information on the
reflection phase. Measuring the reflectivity of polarized
neutrons for different magnetic fields provides a set of
correlated data which allows the separation of the phase of
the reflection coefficient in the same way as in the reference
layer method. In fact the recent proposal of Majkrzak et
al.** and de Haan et al.*® is a special case of the discussed
scheme. For the successful application of the procedure it
is essential to resolve the interference term. Therefore we
have studied the influence of the finite energy width of the
beam on the measured quantities.

§.2. Reflection coefficient for polarized neutrons
The specular reflection of low-energy neutrons is
described by the one-dimensional Schrodinger equation®®
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in the coordinate x perpendicular to the planar surface of
the sample, where ¢ is the perpendicular momentum of the
incident beam and ¥(x) is the neutron optical potential
profile. In the following we assume that the sample
extends over the region x > 0 with its reflecting surface at x
=0, so that ¥(x) = 0 for x < 0. The reflection coefficient
R(q) is then given by

R — ig(q) _
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where y(q) is the logarithmic derivative of the Jost-type
wave function y(x;q) at x = 0.
If we place the experimental set-up in an external
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magnetic field B(x) the potential acting on a polarized
neutron acquires an additional term

V(x) =V (x)+U(x) (3)
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Fig.1 Sketch of the different interaction terms affecting the
neutron specular reflection in the proposed set-up for g, =+1.
a) Neutron optical potential; b) magnetic interaction U(x); ¢)
total interaction (heavy curve) and neutron optical potential
(thin curve)

where
2m - =
U(x)=——77"gnuN<f-B(x) (4)
1
Here, py is the nuclear magneton, g, = -1.913 the

gyromagnetic factor, and m, the mass of the neutron.

The neutron optical potential (x) is independent of the
external magnetic field. Thus specular reflection
measurements under controlled variations of the magnetic
field provide a set of reflectivity data which are related to
each other, since they are generated by the same (but
unknown) potential profile superposed with different
known magnetic interactions.

In the following we use a coordinate system where the
reflecting surface of the sample is shifted to x = a so that the
neutron optical potential vanishes for x < a (see Fig. 1a).
The keystone of the proposed procedure is the application

of a magnetic field B(x) = B(x)? perpendicular to the
scattering plane which vanishes for x < 0 and is assumed
homogeneous (B(x)=B>0) for x > a leading to a
constant magnetic interaction term

Ux)=Uo,, U= ghﬁj—
within the sample. In the following we consider neutron
beams polarized parallel and antiparallel to the magnetic
field corresponding to o, = +1 and -1, respectively. The
configuration is sketched in Fig. 1 for g, = +1.

1y B>0 (5)

En

The functional behaviour of the field B(x) in the range 0
< x < a is arbitrary but known, and allows one to evaluate
the (left, right) reflection and transmission coefficients
PLr(q) and 7 x(q) for the magnetic interaction alone.
The indices (+) and (-) refer to the polarizations ¢, =+1 and
-1, respectively. Knowing g1 r(¢q) and 7, (q) it is possible
to express the total reflection coefficient R.(g) in terms of
the reflection coefficient R(q) for the neutron optical
potential /(x) alone,

_ T (@R(gz)e™™ + p(9)
Ray=" Pz (@)R(gs)e™ ™
with
1:(9) = 7, ()7 (@) = p; (@) pr (q) (7)

These relations are to be read separately for the upper and
lower signs, where g+ is defined by

q.=q" £U (8)

The introduction of a homogeneous magnetic field for x
> a implies a modification of the beam energy within the
sample, i.e. Eq. (6) relates R_(q)R(q;) (cf. also Fig.1c).

The exponential €”“% in Eq. (6) arises from the shift of

the reflecting surface of the sample by the distance a (cf.
Fig. 1), and R(q) describes the reflection from the sample
with its surface placed at the origin of the coordinate
system.

In the special case of a steplike magnetic field (U(x) =

+ U for x > 0) the quantities g, » go over into the Fresnel
coefficients while 77°(q) becomes unity. Furthermore, Eq.
(6) shows that for a magnetic field which sets in smoothly
at x = 0 (so that the corresponding reflection becomes
negligible, p; z « 1 and 1. & = 1) the reflection coefficient
R.(q) reduces to that of the (shifted) sample at the
momentum ¢ .

§.3 Determination of the complex reflection coefficient

In standard neutron specular reflection measurements
only the reflectivity 7(q) = |R(q)| can be measured, while
the reflection phase ¢ (¢) remains undetermined. Here, we
exploit the relationship between R.(g) and the reflection
coefficient R(q) for different magnetic interactions U(x) to
determine ¢ (q).

Taking the absolute square of Eq. (6) and replacing ¢
with g ., we obtain

- pi(q.)R(g)e™™

=|n*(g.)R(9)e** + p; (q.)

r(q.)

(9)

2

It is seen that the quantities p L, 77, and . are always
taken at the corresponding momenta g.. We suppress these
arguments in the following expressions.

For momenta in the range ¢° < U one must clearly use
only the polarization o, = +1 associated with the argument
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g+, which remains real (while ¢g. becomes imaginary).
Equation (9) can be rewritten as the equation of a circle in
the complex R-plane,

R(q) - z.(@)] =¢2(q) (10)
with the center at

—-2iaq

Y= LR

z.4q — e (11)
£ p};| |7
and the radius
71Tk
(@) =T —n (12)
I \Pr| — |7

Performing three experiments for each momentum ¢ with
the same sample but different magnetic fields, B(x), and/or
shifts of a, one obtains the necessary data to draw three
circles in the complex R-plane with the complex number
R(q) as their intersection point. This method has already
been proposed by de Haan et al.>® for the special example
of a homogeneous magnetic layer in front of the sample. It
is essential for this method that the intersection point is
well defined. Problems can arise at low momenta ¢. In fact
de Haan et al.>® observe a degeneracy of the three circles at
low g -values thus limiting the possibility to extract the
phase #(q). However, as observed in Ref. 33 an
extrapolation from g (0) = -w helps in this region.

§.4 Remarks on the applicability

In neutron specular reflection measurements we deal
with neutron optical potentials in the range between
-20-10 nm™ and 100-10“ nm™. The neutron optical
potential of most materials is repulsive and can therefore
not sustain a bound state which would complicate the
extraction of the potential from reflection data. In order to
determine the reflection coefficient R(q) by the procedure
discussed above the magnetic interaction must not be
negligible in comparison with typical strengths I/ of
neutron optical potentials. For example for an Au-sample
we have V= 55.3-10" nm>; the equivalent field strength is
B ~ 3.4 T. Usually much weaker magnetic fields (B~ 0.1 -
0.3 T) will suffice to give rise to measureable effects. Such
magnetic fields can easily be produced and present no
obstacle for applications.

In order to extract the phase of the reflection coefficient
R(g) from Egs. (10)-(12) via measurements of the
reflectivity r. (g.), the Kiessig oscillations in the latter must
be resolved. These are associated with the factor e**
appearing in the expression (6), whose absolute square
yields the measured reflectivity ». (g.). The Kiessig
oscillations have a period n/a in the variable g, which must
not be exceeded by the momentum resolution 4q of the
neutron beam (determined by its angular resolution and
monochromaticity),

b5
Aq<<A (13)

Therefore, the distance a must satisfy

a<<(%)(A%)_] (14)

Depending on the type of selector used the
monochromaticity part of the resolution (4dg/g) lies
between 0.1 and 10™ or even lower, where the upper value
refers to mechanical devices and the lower ones to crystal
monochromators. For example, assuming a realistic beam
monochromaticity (4¢/q) = 10~ only configurations with
a<<3pmatq=0.1nm" fulfil the condition (14). For larger
distances a significant suppression of the phase
information occurs.

If the Kiessig oscillations are averaged out the measured
reflectivity ».(q) takes the form>”

2
2

R(q)[
R(q)’

Here, the phase information is completely lost.
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§.5 Conclusions

In this paper we have generalized a recent proposal to
determine the complete complex reflection coefficient for
neutron specular reflection. This method exploits the
superposition of the unknown neutron optical potential of
the sample under investigation with a known magnetic
interaction. One has to perform three neutron specular
reflection measurements with polarized neutrons at a given
g-value choosing different field configurations and/or
displacements of the reflecting surface of the sample. The
method seems most promising for sufficiently thin (<< 1
4on) magnetic layers directly on top of the reflecting surface
of the sample. Such a configuration has been proposed by
de Haan et al.*¥ One may also consider a set-up with a
uniform magnetic field which extends over the entire
positive x-axis. Shifting the sample by distances of the
order of nanometers - which is possible today - one can scan
a single Kiessig oscillation without resolving the full
structure of 7:(g). One still obtains the details of R(q) by the
intersection of at least three circles. With the full
knowledge of R(g) the neutron optical potential can be
evaluated unambiguously.''*®

We have seen that a main limitation of the method stems
from the finite resolutions of the beam. However, the
length scales involved are sufficiently large to promise
interesting applications in various fields.
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