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Stripe states in high-Tc superconductors are studied using the two-dimensional t-J model.
The effect of strong correlation or the exclusion of doubly occupancies is teiken into account via
Gutzwiller approximation. The spatial dependence of the order parameters are obtained from
the numerical diagonaJization of the Bogoliubov-de Gennes equation derived in the Gutzwiller
approximation. It is shown that there are two possibilities for the stripe pattern. One is the
stripe state without dj2_y2-wave superconductivity, which indicates the competition between the
stripe state and superconductivity. However this state has a longer periodicity them that observed
experimentally. The other is the stripe state in which the incommensurate antiferromagnetic
correlation and dj,2_^2-wave superconductivity coexist. This state is consistent with experiments,
but in order to stabilize it, some additional pinning potentials for holes are necessary.
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§1. Introduction

Recently various experiments, especially neutron scat
tering have supported the existence of stripe state
in some high-Tc cuprates.^"®^ This state htis one-
dimensional stripes containing holes (charge ordering) as
well as the antiferromagnetic regions between the stripes
(incommensurate antiferromagnetic spin ordering). In
some cases, it has been argued that this type of stripe
state coexists with superconductivity (SC).^'^'®^

Theoretically the possibility of stripe states was dis
cussed in the Hubbard model®'^^^ and t-J model.^^'^^^
However the previous works considered only the incom
mensurate antiferromagnetism (ICAF) and charge order
ing. The superconducting order parameters have not
been taken into account. However one of the interesting
problems is the interplay between the stripe state and
dj.2_j,2-wave SC. Actually Emery et a/discussed that the
stripe state is the origin of high-Tc superconductivity.^®^
Therefore it is important to study whether the stripe
state can coexist with the dj.2_j,2-wave SC or not.
For this purpose the t-J model is the most appro

priate model because this model represents the doped
Heisenberg system and the AF and d-wave SC corre
lations can be studied on the equal footing. Since the
main interaction in the t-J model is the superexchange
interaction, there appear interesting phenomena relating
to the magnetism in the superconducting state. Fur
thermore the two-dimensional t-J model is regarded as
a realistic model for high-Tc superconductors,^®' and
we can investigate the interplay between ICAF and d-
wave SC as a function of hole-doping, which is important
when compared with the actual high-Tc materials. This
model takes the strong correlation into account through
the Gutzwiller's projection operator prohibiting the dou-
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ble occupancy,^®^ and thus we can elucidate the effect
of strong correlation in addition to the doping depen-
dences.^®"^^^
Phase diagram of this model has been discussed from

various viewpoints, i.e., slave boson mean-field theory,
variational Monte Carlo simulation, Gutzwiller

approximation^®' and high-temperature expansion.^®^
All of these studies agree that the dj.2_j,2-wave SC state
is stabilized for finite doping region. The interplay be
tween the AF near half-filling and d-wave SC was dis
cussed in variational Monte Carlo simulations.^^'^®^ Al
though the state near half-filling is a coexistent state
between AF and d-wave SC, the t-J model explains nat
urally the fact that the ground state changes from the AF
to the SC state as the carrier density increases. In this
paper we study the stripe state in the two-dimensional
t-J model especially for the hole doping 6 = 1/8.
There are two possibilities for the stripe state in the t-

J model. One is the coexistence between the d-wave SC

and ICAF, as suggested by Emery et In this case
the d-wave order parameters are localized in the hole
stripe regions and they are coupled two-dimensionally
through the AF regions. We expect the spatial depen
dence of the d-wave order parameters: it is smaller in
the AF region and larger in the hole stripe. The other
possibility is the case where AF and d-wave SC compete
each other. In this case we expect either a pure ICAF
state or a pure d-wave SC state for the ground state.
We study these two possibilities in the t-J model us

ing the Gutzwiller approximation (GA) in which the
Gutzwiller projection is taken into account as a statis
tical weight.^®^ Since the simple slave boson mean-field
theory or Gutzwiller approximation gives a qualitatively
wrong results when both the AF and the d-wave SC or
ders are considered, we use a modified GA. The spa
tial variation of the d-wave order parameter and AF
order parameters around the stripe is determined self-
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consistently.
We find that a stripe state is stabilized in which the

period of the hole stripe is 8 lattice constant. In this case
the ICAF is realized but the d-wave SC is completely
suppressed. This indicates the competition between the
d-wave SC and stripe state in the t-J model. On the
other hand, the stripe state with 4 lattice periodicity
can be stabilized only if the pinning potential for holes
favoring the stripe pattern is introduced. In this case we
find that the ICAF and d-wave SC coexist.

§2. t-J Model and Gutzwiller Approximation

We consider the two-dimensioned t-J model on a

square lattice:

n = -tY, Poiclcj, -b h.C.)PG + (2-1)
{ij)" <»;>

where {ij) means the summation over nearest-neighbor
pairs and S,- = The Gutzwiller's projec
tion operator Pq is defined as Pg = n.(i

Since the constraint of no double occupancy is imposed

on this Hamiltonian, it is difficult to carry out analytical
calculations even in mean-field theories. Here we con

sider T = 0 variational theory. In order to study the
electronic states in inhomogeneous systems, we assume
site-dependent variational order parameters, Aj^-, in the
trial wavefunction

iv> = PGit^o(Ay.)>, (2.2)

cause it is stabilized near 6 = 0.125 doping. On the other
hand, if the AF order parameter is taken into account in
the GA, we obtain^"'

,  ( 2(1-6) y
3s I 1 £2 , ) ' (2'7)\

9t =

 — 6^ -\- Am? ) '

2(5(1 - 6)

1-6^-1- 4ro^'

where m is the expectation value m = ̂(uit - ntq)o.
However it was shown that this GA does not give AF
state even at half-filling.^®^

Therefore in this paper we use the modified GA which
gives the reasonable estimate of the AF correlation com
pared with the results in variational Monte Carlo sim
ulations.^® We found that the Gutzwiller factor g,
should depend on the direction of the quantization axis
of the AF order,

{i>\Si ■ S,#)

=  + SJS]), + gf{SfS])o,{2.S)
instead of eq. (2.4). The explicit forms of g^^yg, are
obtained by taking account of the intersite correlations
31)

^XY^ ( 2(1-i) y,-T
\ 1 — 6^ -b 4m2 /6"^ -b 4m2 ̂

1

Am? -b X2

where |V'o(Ay )) is aBCS-SDW mean-field solution. This
wavefunction is a natural generalization of the RVB
state.

The variational parameters A^ are determined so as
to minimize the variational energy

i^var = {m\^) = {M^l)\PGnPG\M^l)). (2.3)
It is usually difficult to estimate Pyar due to the
Gutzwiller projection. Here we use a Gutzwiller approx
imation (GA),^®'^^^ in which the constraint is taken into
account as a statistical average as

{ip\Si • Sj\Tp) = gs{Si • Sj)o,

(V'lcLcj.rlV') = gt{ctcj„)o, (2.4)
where (• • ■)o represents the average in the wavefunction
without Gutzwiller projection, |^o(Ay)). This leads to

Pva.t = (2-5)

where the parameters t and J in Ti are replaced with

= gtt, = gsJ, (2.6)

in the effective Hamiltonian HeS- It has been shown
that the GA gives a fairly reliable estimation for the
variational energy for the pure d-wave SC state when it is
compared with the variationcd Monte Carlo results.^®'

As noted in §1, usual mean-field theories generally
overestimate the AF long-range order. In the slave boson
mean-field theory, the AF order is too overestimated and
it extends up to unphysical doping rates (15~20%).^®^ In
this scheme, we are unable to discuss the stripe state be-

.  2r, , 6X2(1-6)2 _3i2X2-b4m {l+i_g2 + 4^2« }

(2.9)

(2.10)

with

CE— 1 -b
4X

(1-52 + 4^2)2'

X= 26®(A^ - x') + 8m^(x^ + A^) -b 2(x^ + A'^)^,
X2=2(x'-bA2). (2.11)

Here are expectation values for the hopping and
superconductivity, respectively: x = S'ld A =
(ct^ct^)o. The Gutzwiller factor for the hopping term is
given by

26(1 - 6) (1 + 6f - Am? - 2X2
1 —6^+4m2 {1 — Am?gt = ■a. (2.12)

The above expressions reproduce the results obtained in
the variational Monte Carlo simulations.®^'

§3. Stripe States in the t-J Model

For studying inhomogeneous systems we use x, A and
m are local expectation values such as A,j = (c-^ct^)o
etc. Thus the Gutzwiller factors g^^,gg and gt depend
on the bond {ij). Minimizing FJyar in eq. (2.3), we ob
tain a Bogoliubov-de Gennes equation and a set of self-
consistent equations in a similar way to the BCS mean-
field theory:®®'
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with

fT.v,= -E(':
eff Jifx)i) 6i=i+T + X) ~

(3.2)

where r runs as vectors pointing to the nearest-neighbor
sites and

tij =

''tj — lyUs,!]'' ̂  aIIb,tj^'l
1 .XY

2'

.

Here (Hij) is defined as the local energy,

(Hij) = -2Re [t|f xu] - Jff (|Aof -f Ixof)

(3.3)

(3.4)

and the partial derivative of (Hij) with respect to ra,-
is only applied to the Gutzwiller factors, gt,ii,9^Jj and

Self-consistent equations arealiy

aX= A,,--
1 d{Hii)

Jtf

Xij Xij
1 djHii)

dxh 'Jff
(3.5)

with

Aij — (cf|c|^)o

= -iE«X + «K*)tanh

Xij = (cLcja)o

= -iE« - vfv:'*)tanh

pE"

pE"
(3.6)

We solve numerically the Bogoliubov-de Gennes equa
tion and carry out an iteration until the self-consistent

equation for AYj,xYj is satisfied. Thus we obtain the
fully quantum results. In Fig. 1, the self-consistent solu
tion for 6 = 1/8 and Jjt = 0.3 is shown. We have used
a unit cell of the size 16 x 2 which is compatible with
various stripe states. The stripe state in Fig. 1 is the
vertical stripe and has the 8 lattice periodicity for the
hole density, which does not coincide with that observed
experimentally. We did not find any self-consistent solu
tion of the stripe state with 4 lattice periodicity, but we
will show shortly that such a stripe state is stabilized by
pinning potential for holes (Fig. 2).
As apparent from Fig. 1, the phase of the AF region

changes tt when it crosses the hole stripe cis predicted.
However the AF moment is not so large in the AF region
and there is not rapid change of the hole density. Fur
thermore in this state the d-wave SC order parameters
are completely suppressed. This suggests the competi
tion between ICAF and d-wave SC in the t-J model.

Actucdly we find another local-minimum solution with
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Fig. 1. Stripe state with 8 lattice periodicity found in the t-J
model with the hole doping 5 = 1/8 and Jjt = 0.3. The d-wave
SC order parameters A,'j are completely suppressed.

uniform d-wave SC order parameters without any AF
moment. Comparing the variational energies Evar (eq.
(2.3)), we find that the stripe state in Fig. 1 has the
lower energy than the pure d-wave SC state. But the
energy difference is only A£var = 0.0055.

Figure 2 shows the stripe state with 4 lattice period
icity, which is stabilized when the pinning potential for
holes is applied. This state corresponds to the stripe
state experimentally observed. We have included the
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Fig. 2. Stripe state with 4 lattice periodicity found in the t-J
model with the hole doping 5=1/8 and J/t = 0.3. This state is
stabilized only with the pinning potential for holes. The d-wave
SC order parameters do not vanish inside the AF region.

pinning potential

J2Vi(l-hi-6), (3.7)

in the t-J model, where 6 = 1/8 is the average hole
density. In Fig. 2, we have chosen Vi = 0.15 for i =
in{n = integer) and Vi = -0.15 for i = 4n-\- 2. In this
case the d-wave SC order parameters Aij do not vanish
inside the AF region. Stabilization of this stripe state
indicates that the ICAF and d-wave SC can coexist if the
charge ordering is stabilized by other mechanisms such as
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impurity pinning etc. We also studied the dependence of
the amplitude of the pinning potential Vi. We find that
the stripe state in Fig. 2 is stabilized when [Vil > 0.05t.
If we chose |Vi| < O.OSt, the self-consistent solution is
either uniform d-wave SC state without AF order or the

stripe state as in Fig. 1.

§4. Summary and Discussions

In this paper we have shown that there are two pos
sibilities for the stripe state in the two-dimensional t-J
model. One is the case where ICAF and d-wave SC co

exist as shown in Fig. 2. This stripe state corresponds
to the state observed experimentally. However this state
is realized only when the charge ordering is stabilized
by other mechanisms outside of the t-J model. We ex
pect that impurity potential, instability to the LTT lat
tice distortion etc. will cause the formation of the stripe
state. If the ICAF is more enhanced than in Fig. 2, the
d-wave SC looses its phase coherence and thus the SC
transition is suppressed.
Another possibility for the stripe state is that shown

in Fig. 1. This state has 8 lattice periodicity of the hole
density and the d-wave SC order parameters are sup
pressed. This corresponds to the stripe states found in
the Hubbard model. It is interesting that the d-wave
SC can coexist only in the stripe state with 4 lattice pe
riodicity (Fig. 2).
The difference between the above two stripe states be

comes apparent when we look at the local density of
states (DOS). In the stripe state without d-wave SC,
the local DOS has a characteristic feature of the soliton

band just above the Fermi energy. On the other hand,
in the other stripe state with d-wave SC, the local DOS
is close to the DOS for the d-wave SC state (V-shape
DOS). In the region where the AF moment is large or
close to half-filling, the local DOS looks like the DOS for
the underdoped region (i.e., larger SC gap). Therefore if
the scanning tunneling spectroscopy is carried out, it is
possible to distinguish the two kinds of stripe states.

Recently stripe states with shorter periodicity have
been discussed in some extended models.^''' Thus it is

interesting to see the interplay with the d-wave SC in the
models with nearest neighbor repulsion and/or hopping
terms. The doping dependences of the present stripe
states as well as the effect of additional terms are under

investigation and will be published elsewhere. As for the
interplay between the AF and d-wave SC, another inter
esting problem is the possibility of an antiferromagnetic
vortex core which was expected in the S0(5)-symmetric
theory.®^' Since the d-wave superconducting order pa
rameter is suppressed inside the core, the antiferromag
netic local moment may show up inside the core. We
studied this possibility using the modified GA where the
antiferromagnetic local moment is taken into account.
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