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Effects of the inter-layer couplings for the orthogonal dimer system SrCu2(B03)2 are discussed.
The spin-gap A of the three-dimensional model is independent of the inter-layer couplings when
they are small. Therefore at low temperatures (T < A) thermodynamic properties are described
well by the two-dimensional model. On the other hand at high temperatures the mean-field
type scaling ansatz is useful to discuss the magnetic susceptibility for week inter-layer couplings.
From fit of the magnetic susceptibility, the estimated coupling constants are 7 = 85 K for the

nearest-neighbor couplings, 7 = 54 K for the next-nearest-neighbor couplings, and 7 = 8 K
for the inter-layer couplings.These parameters are consistent with the temperature dependence
of the specific heat at low temperatures.
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§1. Introduction

The new spin-gap system SrCu2(B03)2, which was
found by Kageyama et al.^ is a beautiful realization of
the two-dimensional Shastry-Sutherland model (Fig. 1),
which was studied by them almost twenty years ago.^^
The original model seems to be very artificial. In fact,
it was constructed in such a way to realize an exact
ground state on a two-dimensioned model. The system
for SrCu2 (603)2 is shown in Fig. 2(a), which is described
as the orthogonal dimer model. It is topologically
equivalent to the two-dimensional Shastry-Sutherland model,
where the nearest-neighbor bond in the former model
corresponds to the next-nearest-neighbor bond of the lat

ter and vice versa. The orthogonal dimer model shows a
quantum phase transition from the gapful phase to the
gapless phase as the next-nearest-neighbor interaction is
increased.^^ In the gapful phase the ground state is the
exact dimer ground state.

SrCu2 (803)2 consists of the layers of CUBO3 and the
layers of Sr. In the compounds Cu^"'" ions occupy crys-
tallographically equivalent sites and described by a spin-
1/2 Heisenberg model. As the first approximation the
compound may be treated as a two-dimensional system

and the novel features of the SrCu2(B03)2, for example
the magnetization plateaus, axe explained by this model.

In fact the 1/3-plateau predicted by theory®"^' was ob
served in the recent experiment in high magnetic fields.®^
The coupling constants were estimated from the spin-gap
and the Curie-Weiss constant. According to the estima
tion, SrCu2 (803)2 is regarded as a material which is
near the quantum phase transition point.®' Originally,
the spin-gap observed in the powder sample 30 K was
used. While, more recent experiments using the single
crystal samples show that the gap is close to 35
In this paper we will study the thermodynamic prop

erties of SrCu2(B03)2 in more detail and reestimate the
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ig. 1. The model discussed by Shastry and Sutherland, which
has the dimer singlet ground state.

oupling constants for this material taking also the inter
layer couplings into consideration. First, one can show
that the ground state and the first excited state are inde
pendent of the interlayer couplings. For that reason the
properties of SrCu2 (803)2 at low temperatures can be
described well by the two-dimensional model. Therefore

we discuss the temperature dependence of the magnetic
susceptibility based on the two-dimensional model at low
temperatures and determine the coupling constants in
the CUBO3 plane. Then we show that these parameters
are consistent with the specific heat. From the suscepti
bility at high temperatures the inter-layer couplings may
be estimated.
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§2. Ground state and first excited state

2.1 Two-dimensional orthogonal dimer model

As shown in our previous analysis®' the magnetic prop
erties of SrCu2 (603)2 are described rather well by the
two-dimensional Hamiltonian:

by

H = J^Si ■ Sj -I- J ' ̂2 Si • Sj (2.1)

The system is shown in Fig. 2 (a). The model can be
considered as a coupled dimer model. The dimers, where
two spins are coupled with the nearest-neighbor coupling
J, axe connected by the next-nearest-neighbor bond J'.
An elementary unit for the interaction between a pair of
the dimer bonds is shown in Fig. 2 (b). It is convenient
to use the dimer bases defined for each nearest-neighbor
bond:
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is an exact eigenstate of the Hamiltonian (2.1).®'®' Here
the index a denotes each dimer bonds and runs over all

dimer bonds. For coupling constants J'/J < 0.69 this
eigenstate is the ground state.®'^®'^®' This model shows
a quantum phase transition at J' /J = 0.69 from the
dimer singlet state to the Neel ordered state which is
gapless.^' Note that in the limit of J /J —» cxi, the
present model reduces to the square lattice Heisenberg
model, whose coupling constant is J .
The singlet dimer ground state has a spin-gap, which

can be estimated by the perturbation theory. The spin-
gap up to the fourth-order is given by

(2.7)

and the result up to the fifteenth-order is given in Ref. 12.
The spin-gap for finite systems is shown in Fig. 3, where
the number of the spins is 16, 20, and 24 with periodic
boundary conditions. The finite size effects for J' jj ̂
0.66 are small. The results of eq. (2.7) and the numerical
results for the finite size systems agree well for J'fj <
0.5.
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Fig. 2. (a)The model for SrCu2(B03)2 : Two-dimensional or-
thogonal dimer model. (b)A configuration of two dimers which
are orthogonal.

The direct product of the singlets on dimers defined

Fig. 3. Spin-gap for finite lattices: N, = 16, 20, and 24 from the
dimer singlet ground state. The solid line is the perturbation
result up to the fourth order.

The perturbation theory predicts a novel character for
the triplet excitation. The triplet excitation is com
pletely localized up to the fifth-order, which leads to
crystallization of the triplet excitations at certain mag
netizations. At magnetizations where the crystallization
occurs, the magnetization plateaus appear.®'®"^' This
feature of the triplet excitations can be understood from
the matrix elements for one triplet excitation.

j'(Si -f S2) • S3|ti)a|s)6 = ̂|tl)o|fo)fe " ̂\to)a\tl)b ,
(2.8)
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and

j'(Si +S2) •S3|s)a|tm)fc = 0 (m = 0, ±1) , (2.9)

where the site indices are specified in Fig. 2(b). Equation
(2.8) means that when a triplet moves to one of neigh
boring bonds it leaves another triplet behind. From the
symmetry reason, the parity with the reflection, the ma

trix element shown in eq. (2.9) vanishes. Equations. (2.8)
and (2.9) make a hopping of a triplet excitation rather
difficult. It becomes possible through a closed path of
dimer bonds and thus the hopping processes start from
the sixth-order in the perturbation. Recently this almost

localized nature of the dispersion is directly observed in
the neutron scattering experiment.

2.2 Effects of the inter-layer couplings

As we noted before, SrCu2 (603)2 consists of CUBO3
layers cind Sr layers. The CUBO3 layers stack alternately
as is shown in Fig. 4(a). Along the c-axis dimers are cou
pled with inter-layer coupling J as shown in Fig. 4(b).
It is obvious that the matrix element for the singlet
dimers vanishes:

/ (Si -I- S2) • (S3 -H S4)|s)a|s)6 = 0 . (2.10)
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Therefore the three-dimensional model for SrCu2 (663)2
has the exact orthogonal dimer ground state for small J
and J

Next, let us consider the case where a triplet is excited.
The matrix element from this state also vanishes:

j"(Si -1-82) • (S3 -|-S4)|t„)o|s)6 = 0 (to = 0,±1).
(2.11)

It is obvious that the triplet excitation cannot move
along the c-axis at low temperatures. If the neighbor
ing planes are filled with the dimer singlet states, the
triplet excitation on a plane is completely confined in

that plane. Thus the magnitude of the spin-gap for
the three-dimensioned model is the same as the two-

dimensional one. The dispersion for the triplet excitation
is not modified, either.
The inter-layer coupling J does not affect the spin-

gap. It means that the properties of SrCu2 (663)2 can
be described by using the two-dimensional orthogonal
dimer model at low temperatures: T < A, even if the

inter-layer couplings exist. Notice that the theoretical
predictions discussed so far®'^~^^ are hardly changed at
low temperatures by the inclusion of finite inter-layer
couplings, which are smaller than J'.

§3. Thermodynamic properties of SrCu2(B63)2

3.1 Magnetic susceptibility

Here we discuss the temperature dependence of the
magnetic susceptibility of SrCu2(663)2 and determine
an optimal set of the parameters J, J , and J .

Let us start from low temperatures: T < A. The
magnetic susceptibility at T < A may be described well
by the susceptibility of the two-dimensional model \2d.

Therefore we calculate X2d with the transfer matrix method

and compare the results with experimental ones at T <

30 K. The results are shown in Fig. 5. The results for

I  |r 2
ba

fbl

Fig. 4. (a) The model for SrCujf 803)2 : Three-dimensional or
thogonal dimer model, (b) The configurations of two dimers
along the c-axis are also orthogonal in a different way from

Fig. 2(b).

j'/j = 0.62,0.64,0.66 are shown by the filled symbols.
The spin-gap A ~ 35 K is obtained by various experi-
ments,®^^^) and J is determined so that the spin-gap ob
tained from the exact diagonalization for iVg = 24 is 35
K: J = 72 K for f /J = 0.62, J = 88 K for j' jJ = 0.64,
and J = 104 K for J / J = 0.66. Here we note that if
we determine the parameters with which both the Curie-
Weiss constant and the spin-gap is satisfied by the two-
dimensional model, we get J fj = 0.66 and J = 104 K.
The system size Ns = 16 is used for the calculations at
finite temperatures. In the present system the finite size

effects is not so important because the triplet excitation
is almost localize. In Fig. 5, to show finite size effects,
the results for Ng = 16 and 20 are shown with open
symbols for J fj = 0.635, which is considered to be an
optimsd choice. The finite size effects cire observed but
small. Considering the finite size effects, we may con
clude that the parameters J jJ = 0.635 ± 0.01 explain
the experiment well. In the following, we use the param
eters J fj = 0.635 and J = 85K as the optimal set for
SrCu2(663)2.
Now we consider the magnetic susceptibility at tem

peratures T > A . As is shown in Fig. 7, the calcu
lated susceptibility for J jJ = 0.635 and J = 85K, which
agrees with experiments well at T < A, does not fit to
the experiment in the temperature range: 20 < T < 350.
The system size effects at the temperatures T > 50 K is
so small that the results for TV = 20 are considered as the
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Fig. 5. The temperature dependence of the magnetic susceptibil
ity on the two-dimensional model. J /J = 0.62, J /J = 0.64,
J /J = 0.635, and j' jj = 0.66.

bulk limit for such temperature range. This fact shows
that the effects of the inter-layer couplings J on the
susceptibility cannot be ignored in such a temperature
range. To estimate the magnitude of J , we follow the
mean-field type scaling ansatz used in Ref. 15:

( T / T t" I T\ — X2d{J /J)X{J IJ,J /J) l + (3.1)

The coefficient 4J in the denominator reproduces the
correct high-temperature Curie-Weiss constant of the three-
dimensional model. At low temperatures this ansatz
gives the same spin-gap as that given by the two-dimensional
model, which is recusonable because the spin-gap is not
modified by a small J .

To check the quality of eq. (3.1) we have calculated
the temperature dependence of the susceptibility using
a bilayer model, where there axe 8 spins in each layer.
We assume the periodic boundary conditions. The used
parameters are J / J = 0.4 for the in-plane couplings and
J ! J = 0.05, 0.1, 0.15 for the inter-layer couplings. The
results are shown in Fig. 6(a). For this system, the spin-
gap is J because of the periodic boundary condition. We
select small J /J so that inter-layer couplings do not
change the magnitude of the spin-gap and the ground
state. The ground state and the first excited state for
these systems are checked by the exact diagonalization
calculations. We scale the obtained susceptibility onto
the effective two-dimensional one X2d through the inverse

relation:
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ig. 6. (a) The temperature dependence of the magnetic suscep
tibility of the bilayer model. J jJ = 0.4 and J /J = 0.05,
J /J = 0.1, and J !J = 0.15. The solid line is the results of the
two-dimensional model, (b) Scaling plot of the mean-field type
ansatz.

n the range 100 K < T < 350 K to eq. (3.1) and deter
mine J . Good agreement is obtained for J / J = 0.09.
This fit is shown in Fig. 7: J = 85 K, J =54 K, and
j' = 8 K. The inter-layer coupling J is about 10% of
the intra-dimer coupling J. The inter-layer coupling is
not important at low temperatures but is important to
fix the energy scale of the coupling constants. One of
the origin of the rather big Curie-Weiss constant ~ 83
K may be attributed to the existence of the inter-layer
couplings.

X2d{J /J,J /J)) =
Xzd{j'lJ,j"/J) (3.2)

l-4J"x3diJ'/J,J"/jy
The scaling plots are shown in Fig 6(b). The results
form approximately a single line, supporting the mean-
field type ansatz.

Next, using eq. (3.1), we estimate the magnitude of the
inter-layer coupling J . Here we use X2d(J /J = 0.635)
with J = 85 K because it agrees with the experiments
well at low temperatures. We fit the susceptibility data

3.2 Specific heat
Next we discuss the specific heat. The temperature

dependence of the specific heat of SrCu2 (603)2 at low
temperatures T < A may be also explained well by using
the two-dimensional model. The specific heat is calcu
lated by the transfer matrix methods again. We compcire
the theoretical results for J /J = 0.635 and J = 85 K,
which explained the temperature dependence of the sus-



76 Shin Miyahara and Kazuo Ueda

0.004

0.0035

0.003

o 0.0025

3

^ 0.002
E
A 0.0015

0.001

0.0005

experiment
y=85K, U=54^ y"=8K □
y=85K, y'=54K, y"=OK 0 -

-

55
15

1  1 1 1 1

150 200

m
350

Fig. 7. Fit of the uniform magnetic susceptibility for SrCu2(B03)2 ■
The parameters used are J = 85 K, J = 54 K, and J = 8 K.

ceptibility well, with the experiments.^®' Here /3 x T® is
used as the specific heat for the phonon term. /? = 0.4
mJ/K'* is used. The results are shown in Fig. 8. We
see that the specific heat for J / J = 0.635 and J = 85
K agrees well with the experiments and the difference
shown around the peak may be explained by the finite
size effects. In Fig. 8 the specific heat for J /J = 0.62,
J !J ■= 0.64 and J /J = 0.66 are also shown for com
parison.
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Fig. 8. The temperature dependence of the specific heat of
SrCu2(B03)2. The fi t parameters are J = 85 K, y' = 54 K.
0.4 X is used as the contribution from phonon degrees of free
dom.

cited triplets originate from the geometrical constraint.
When the orthogonality is broken by some distortion of
dimer bonds, a finite matrix element for a hopping of a
triplet arises. Therefore a triplet excitation is expected
to be a strongly coupled with phonons. Effects of the
spin-phonon couplings will play an important role to un
derstand the behavior of the specific heat, which is an
interesting future problem.

§4. Conclusion

In the present study we have discussed thermodynamic
properties of SrCu2 (603)2 with the three-dimensional
orthogonal dimer model. At low temperatures this three-
dimensional model is effectively equivalent to the two-
dimensional model because the spin-gap is not affected
by the inter-layer coupling J . Therefore SrCu2 (603)2
can be described well by using the two-dimensional model
as the first approximation, not because of the weakness
of the inter-layer coupling J but by the geometrical rea
son.

Even if many triplet excitations exist in one plane, the
triplets move only in the plane in spite of the sizable
inter-layer couplings if the dimer bonds on the neighbor
ing planes are occupied by the singlets. Therefore the
two-dimensional spin dynamics are expected in SrCu2 (603)2
even if there are sizable inter-layer couplings. In fact un
usual diffusive spin dynamics of two-dimensional charac
ter is observed by the NMR measurements.^^'

Concerning the coupling constant: J, J , and J , the
best fit is given by J = 85 K, J =54 K, and J =8
K. In the real system the horizontal and vertical bonds
in each plane are shifted slightly, which means that the
one type of dimers, for example horizontal dimers, are
on a plane and the other dimers, vertical dimers, are
on the other plane. Therefore the inter-layer couplings
along the c-axis consist of the two coupling constants.
Here we treat J by the mean-field type approximation
so that the average of the two slightly different coupling
constants just corresponds to J . The magnitude of each
coupling constant can not be determined separately from
the present analysis.
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At temperatures T 15 K good quality of the fi ts
is not obtcdned and the differences cannot be attributed
only to the system size effects. Possible reasons of this
difference may be the followings. First, in this tempera
ture range the simple /? x T® expression is not sufficient
for the lattice contribution. Second, the effects of the
spin-phonon coupling may be important. In the orthog
onal dimer model, the small kinetic energies of the ex-
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