Interrelation between Orbital Stability and Charge-Ordering Transition in Doped Manganites

Akihiko MACHIDA¹, Yutaka MORITOMO², Kenji OHOYAMA³ and Arao NAKAMURA²

¹Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, Japan ²Center for Integrated Research in Science and Engineering, Nagoya University, Nagoya 464-8603, Japan ³Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Lattice effects on the charge/orbital-ordering transition of doped manganites, $R_{2/3}$ Ca_{1/3}MnO₃ (R=La, Pr, Nd, Nd_{1/2}Tb_{1/2}, and Tb), have been investigated changing the averaged ionic radius $\langle r_R \rangle$ of the rare-earth ions (chemical pressure). We have performed neutron powder diffraction experiments at room temperature and have found a close correlation between the charge-ordering transition and the shape of the MnO₆ octahedra. In comparison with the half-doped manganites, interrelation between the orbital stability and the charge/orbital-ordering transition is discussed.

KEYWORDS: perovskite-type doped manganites, neutron powder diffraction, orbital stability

§1. Introduction

Perovskite-type doped manganites $R_{1-x}A_x MnO_3$, where R and A are trivalent rare-earth and divalent alkaline-earth ions, respectively, have three-dimensional networks of the MnO_6 octahedra. By changing the averaged ionic radius $\langle r_A \rangle$ of the perovskite A-site, the Mn-O-Mn angle, or the transfer integral t between the neighboring Mn sites, is modified (chemical pressure). It is well known that the Curie temperature $T_{\rm C}$ is suppressed with decrease of the $\langle r_A \rangle$ -value. Radaelli *et al.*¹⁾ have performed a systematic neutron structural analysis at a fixed $x \ (= 0.3)$, and have observed a close correlation between the *t*-value and $T_{\rm C}$. Similar to the case of the Curie temperature, the chemical pressure effect on the critical temperature $T_{\rm CO}$ for the charge-ordering transition have been regarded as control of t. In the doped manganites, it is established that the charge-ordering transition accompanies $d_{3x^2-r^2}/d_{3y^2-r^2}$ orbital alternation,²⁾ and that the shape of MnO_6 octahedra relates to the stability of the Mn e_q -orbitals.³⁾ Recently, Machida *et al.*⁴⁾ have reexamined the interrelation between the structural parameters and $T_{\rm CO}$ of the half-doped (x=1/2) manganites, $R_{1/2}A_{1/2}MnO_3$. They have found a close correlation between $T_{\rm CO}$ and the shape of the MnO₆ octahedra: $T_{\rm CO}$ is governed by the orbital stability.

To confirm that the above-mentioned trend is applicable to the other hole concentration, we have extended our research to the x = 1/3 system. We found a close correlation between the orbital stability, which was estimated from the shape of the MnO₆ octahedra in an electrostatic manner, and the charge-ordering transition. This result indicates that the orbital stability is an important factor for the charge-/orbital-ordering transition of doped manganites.

§2. Experimental

A series of ceramics compounds, $R_{2/3}$ Ca_{1/3}MnO₃ (R=La, Pr, Nd, Nd_{1/2}Tb_{1/2} and Tb), was synthesized

Fig.1. Temperature variation of (a) activation energy $E_{\rm ac}$ [= $d(\ln \rho)/d(1/T)$; ρ is resistivity] and (b) magnetization M for $R_{2/3} {\rm Ca}_{1/3} {\rm MnO}_3$. M was measured after cooling down to 10 K in the zero field (ZFC). Downward arrows indicate the critical temperatures $T_{\rm CO}$ for the charge-ordering transition.

by solid state reaction in an air atmosphere. Neutron powder diffraction measurements were performed with the Kinken powder diffractometer for high efficiency and high resolution measurements (HERMES)⁵⁾ installed at the JRR-3M reactor at the Japan Atomic Energy Research Institute, Tokai, Japan. Neutrons with wavelength 1.8196 Å were obtained by the 331 reflection of the Ge monochromator, and 12'-B-Sample-22' collimation. We have analyzed the neutron powder patterns at room temperature with RIETAN-97 β program,⁶⁾ and

TableI. Lattice constants and atomic positions for $R_{2/3}$ Ca_{1/3}MnO₃ determined from neutron powder profiles at room temperature. g means oxygen occupancy determined by Rietveld analysis. The crystal symmetry is orthorhombic (*Pbnm*; Z=4). The atomic sites are R/Ca $4c[x, y, \frac{1}{4}]$, Mn $4b[\frac{1}{2}, 0, 0]$, O(1) $4c[x, y, \frac{1}{4}]$, O(2) 8d[x, y, z]. $T_{\rm CO}$ and $T_{\rm C}$ are the charge-ordering and Curie temperatures, respectively. We also listed the Mn–O bondlength, d_x , d_y , and d_z .

		a (Å)	b (Å)	c (Å)	$R_{\rm wp}$ (%)) $R_{\rm I}~(\%)$	$T_{\rm CO}~({\rm K})$	$T_{\rm C}~({ m K})$	g
La _{2/3} Ca _{1/3} MnO ₃		5.4737(3) 5.4595(4)	7.7124(4)) 3.56	2.02		260	1.015(5)
Pr _{2/3} Ca _{1/3} MnO ₃		5.4277(3) 5.4532(2)	7.6687(4)) 4.28	2.69	207		1.018(5)
Nd _{2/3} Ca _{1/3} MnO ₃		5.4097(3) 5.4625(2)	7.6493(4)) 4.79	2.08	213		0.999(5)
$(Nd_{1/2}Tb_{1/2})_{2/3}Ca_{1/3}MnO_3$		5.3659(3) 5.5042(2)	7.5640(4)) 4.20	1.93			0.980(6)
$Tb_{2/3}Ca_{1/3}MnO_3$		5.3249(2) 5.5519(1)	7.4776(2)) 4.53	2.00			0.995(5)
								2	
R/Ca		O(1	.)		O(2)				
x	y	x	y	x	y	z	d_x (Å)	d_y (Å)	d_z (Å)
0.003(1)	-0.0205(8)	0.937(1)	0.506(1)	0.2748(9)	0.7227(9)	0.0329(5)	1.951(7)	1.969(7)	1.959(1)
0.009(2)	-0.0335(9)	0.931(1)	0.5118(8)	0.2857(6)	0.7132(5)	0.0377(4)	1.959(5)	1.971(5)	1.954(1)
0.0075(9)	-0.0388(6)	0.931(1)	0.5141(7)	0.2882(6)	0.7090(5)	0.0398(4)	1.956(4)	1.983(4)	1.950(1)
0.0116(7)	-0.0494(5)	0.9183(7)	0.5188(7)	0.2915(5)	0.7046(5)	0.0420(3)	1.956(4)	1.995(4)	1.943(1)
0.0121(5)	-0.0603(4)	0.9116(5)	0.5233(5)	0.2965(4)	0.6992(4)	0.0457(3)	1.958(3)	2.020(3)	1.9322(8)
		An one of the second							

have found that the investigated compounds were single phase without detectable impurities. The crystal symmetry is orthorhombic (*Pbnm*; Z=4). Thus obtained lattice parameters, as well as oxygen occupancy, at room temperature are listed in Table I.

In order to determine $T_{\rm CO}$ and $T_{\rm C}$, we have measured temperature variation of resistivity ρ and magnetization M. Figure 1 shows temperature variation of (a) activation energy $E_{\rm ac} \equiv d(\ln \rho)/d(1/T)$, where ρ is resistivity] and (b) magnetization M of $R_{2/3}Ca_{1/3}MnO_3$. The $E_{\rm ac} - T$ curve of $Pr_{2/3}Ca_{1/3}MnO_3$ (thick solid curve) and $Nd_{2/3}Ca_{1/3}MnO_3$ (thick dashed curve) have a peak due to the charge-ordering transition. $T_{\rm CO}$ was defined as the maximal point (downward arrow) of the $E_{ac} - T$ curve. On the other hand, in $(Nd_{1/2}Tb_{1/2})_{2/3}Ca_{1/3}MnO_3$ (thin solid curve) and Tb_{2/3}Ca_{1/3}MnO₃ (thin dashed curve), the $E_{\rm ac} - T$ curves have no peaks, indicating absence of the charge-ordering transition. M was measured under a field of $\mu_0 H = 0.5$ T after cooling down to 10 K in the zero field (ZFC). In La_{2/3}Ca_{1/3}MnO₃, ferromagnetic transition was observed at ≈ 260 K (not shown). $T_{\rm C}$ was determined from an inflection point of the M - T curve. Thus determined $T_{\rm CO}$ and $T_{\rm C}$ are also listed in Table I.

§3. Results and Discussion

In Fig. 2, thus obtained (a) $T_{\rm C}$ and (b) $T_{\rm CO}$ are plotted against the averaged Mn–O–Mn angles $\langle \Theta \rangle$ calculated from the structural parameters (see Table I). Open and closed circles represent the x=1/3 and $x=1/2^{4}$ systems, respectively. One may observe a close correlation between $\langle \Theta \rangle$ and $T_{\rm C}$ in Fig. 2(a): with decrease of $\langle \Theta \rangle$, $T_{\rm C}$ decreases from ~ 360 K and then disappears around $\langle \Theta \rangle \sim 160^{\circ}$. Such a close correlation should be ascribed to the geometrically suppressed $t \ [t \propto \sin(\Theta/2)]$. On the other hand, there appears no correlation between $T_{\rm CO}$ and $\langle \Theta \rangle$ [see Fig. 2(b)]; in spite of smaller $\langle \Theta \rangle$ -value, the charge-ordering transition is absent in $(Nd_{1/2}Tb_{1/2})_{2/3}Ca_{1/3}MnO_3$ and $Tb_{2/3}Ca_{1/3}MnO_3$. Recently, we have investigated the lattice effect on the charge-ordering transition of $R_{1/2}A_{1/2}MnO_3$, and found that the chemical pressure effect on the charge-ordering

Fig. 2. (a) Curie Temperature and (b) critical temperature T_{CO} for the charge-ordering transition of R_{1-x}A_xMnO₃ (x=1/2 and 1/3) against the averaged Mn–O–Mn angle ⟨Θ⟩ calculated from the structural parameters. Open and closed symbols represents the x=1/3 and x=1/2 systems, respectively. Triangle (circle) presents that the sample (does not) show the charge-ordering transition. Hatching is a guide to the eye. Number indicates that the data were cited from Ref. 2: 1. La_{1/2}Sr_{1/2}MnO₃, 2. (La_{1/2}Nd_{1/2})_{1/2}Sr_{1/2}MnO₃, 3. Pr_{1/2}Sr_{1/2}MnO₃, 4. Nd_{1/2}Sr_{1/2}MnO₃, 5. (Nd_{1/2}Tb_{1/2})_{1/2}Sr_{1/2}MnO₃, 6. Tb_{1/2}Sr_{1/2}MnO₃, 7. La_{1/2}Ca_{1/2}MnO₃, 8. Nd_{1/2}Ca_{1/2}MnO₃, 9. (Nd_{1/2}Tb_{1/2})_{1/2}Ca_{1/2}MnO₃, and 10. Tb_{1/2}Ca_{1/2}MnO₃.

transition has an aspect of orbital control, besides the control of t.⁴⁾ In other words, the stability of the e_g -orbitals is an important factor for the charge-ordering transition. Note that the $d_{3x^2-r^2}/d_{3y^2-r^2}$ orbital alternation is established in the charge-ordered phase.²⁾

To estimate the relative stability of the respective e_{g} -

Fig.3. Critical temperature $T_{\rm CO}$ of the charge-ordering transition for $R_{1-x}A_x$ MnO₃ (x=1/2 and 1/3) against the relative orbital stability ΔV (see text). Open and closed symbols represents the x=1/3 and x=1/2 systems, respectively. Triangle (circle) presents that the sample (does not) show the charge-ordering transition. Hatching is a guide to the eye. Inset shows mapping of the data points into the $\Delta V - |V_x - V_y|$ plane. Number indicates that the data were cited from Ref. 2: 1. La_{1/2}Sr_{1/2}MnO₃, 2. (La_{1/2}Nd_{1/2})_{1/2}Sr_{1/2}MnO₃, 3. Pr_{1/2}Sr_{1/2}MnO₃, 4. Nd_{1/2}Sr_{1/2}MnO₃, 5. (Nd_{1/2}Tb_{1/2})_{1/2}Sr_{1/2}MnO₃, 6. Tb_{1/2}Sr_{1/2}MnO₃, 7. La_{1/2}Ca_{1/2}MnO₃, 8. Nd_{1/2}Ca_{1/2}MnO₃, 9. (Nd_{1/2}Tb_{1/2})_{1/2}Ca_{1/2}MnO₃, and 10. Tb_{1/2}Ca_{1/2}MnO₃.

orbitals, that is, $d_{3x^2-r^2}$, $d_{3y^2-r^2}$ and $d_{3z^2-r^2}$, we have calculated the electrostatic potentials, V_x , V_y , and V_z , based on the structural data shown in Table I. For the $d_{3x^2-r^2}$ orbital, we calculated the potential V_x acting on the two e/2-charges located on the Mn–O bonds along *x*-direction:,

$$V_x = 2[V(d_x - r_d) + V(d_x + r_d) + 2V(\sqrt{d_y^2 + r_d^2}) + 2V(\sqrt{d_z^2 + r_d^2})], \quad (3.1)$$

where V(r) is the electrostatic potential between O^{2-} and the e/2-charge. Similarly, we calculated the potentials, V_y and V_z , for the $d_{3y^2-r^2}$ and $d_{3z^2-r^2}$ orbitals as

$$V_y = 2[V(d_y - r_d) + V(d_y + r_d) + 2V(\sqrt{d_z^2 + r_d^2}) + 2V(\sqrt{d_x^2 + r_d^2})], \quad (3.2)$$

and

$$V_z = 2[V(d_z - r_d) + V(d_z + r_d) + 2V(\sqrt{d_x^2 + r_d^2}) + 2V(\sqrt{d_y^2 + r_d^2})].$$
 (3.3)

Here, d_x , d_y , and d_z indicate the Mn–O bondlength and r_d (=0.42 Å) is the radius where the radial charge density of the Mn 3*d* orbital becomes maximum. The larger V_i

are, the more stable the corresponding orbital becomes. The stability of the $d_{3x^2-r^2}/d_{3y^2-r^2}$ orbital alternation can be estimated from the difference of the potentials ΔV :

$$\Delta V = (V_x + V_y)/2 - \langle V \rangle. \tag{3.4}$$

Here, $\langle V \rangle \equiv (V_x + V_y + V_z)/3$ is the averaged value.

In Fig. 3, we plotted $T_{\rm CO}$ against ΔV . Triangle shows the charge-ordering transition, while circle does not show it. If one sees the phase diagram from left to right (the stability of the $d_{3x^2-r^2}/d_{3y^2-r^2}$ orbital alternation increases.), the COI state appears and $T_{\rm CO}$ increases. However, there are exceptions on this trend (see open circles at $\Delta V = 0.034$ and 0.06 in Fig. 3), suggesting that an extra factor is needed for the charge-ordering transition. We mapped in the inset of Fig. 3 the data points against ΔV and $|V_x - V_y|$, the latter of which represents the relative stability between the $d_{3x^2-r^2}$ and $d_{3y^2-r^2}$ orbitals. The triangles (the samples that show the charge-ordering transition) gather in the lower right corner. This suggests that the large ΔV as well as the small $|V_x - V_y|$ are necessary conditions for the chargeordering transition. Intuitively speaking, the negative Jahn-Teller distortion, that is, two long and one short bonds, is needed for the charge-ordering transition.

§4. Summary

We have investigated the interrelation between the charge-ordering transition and the orbital stability of doped manganites by means of neutron structural analysis. We have found that the chemical pressure effect on the charge-ordering transition has an aspect of orbital control for not only in the half-doped (x = 1/2) system but also in the x=1/3 system.

Acknowledgements

This work was supported by a Grant-In-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture.

- Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo and Y. Tokura: Phys. Rev. Lett. **80** (1998) 1932;
 K. Nakamura, T. Arima, A. Nakazawa, Y. Wakabayashi and Y. Murakami: Phys. Rev. B **60** (1999) 2425.
- 3) Y. Moritomo, A. Nakamura, S. Mori, N. Yamamoto, K. Ohoyama and M. Ohashi: Phys. Rev. B56 (1997) 14879; T. Akimoto, Y. Moritomo, K. Ohoyama, S. Okamoto, S. Ishihara, S. Maekawa and A. Nakamura: Phys. Rev. B59 (1999) R14153.
- A. Machida, Y. Moritomo, K. Ohoyama, S. Okamoto, S. Ishihara, S. Maekawa and A. Nakamura: Phys Rev. B 62 (2000) 80.
- K. Ohoyama, T. Kanouchi, K. Nemoto, M. Ohashi, T. Kajitani and Y. Yamaguchi: Jpn. J. Appl. Phys. 37 (1998) 3319.
- 6) F. Izumi: "The Rietveld Method," ed. by R. A. Young, Oxford University Press, Oxford (1993), Chap.13; Y. -I. Kim and F. Izumi: J. Ceram. Soc. Jpn. **102** (1994) 401.

P. G. Radaelli, G. Iannone, M. Marezio, H.-Y. Hwang, S.-W. Cheong, J. D. Jorgensen and D. N. Argyriou: Phys. Rev. B 56 (1997) 8265.