The Cubic to Trigonal Phase Transition in HoB_6 Measured on the New Powder Neutron Diffractometer HRPT at SINQ

Andreas DÖNNI, Peter FISCHER¹, Lukas KELLER¹, Vladimir POMJAKUSHIN¹, Yuichi NEMOTO², Terutaka GOTO² and Satoru KUNII³

Department of Physics, Niigata University, Niigata 950-2181, Japan

¹Laboratory for Neutron Scattering, ETH Zürich and Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland ²Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan ³Department of Physics, Tohoku University, Sendai 980-8578, Japan

The new flexible high-resolution powder neutron diffractometer HRPT at the continuous spallation neutron source SINQ at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, is introduced together with results of an early proposal experiment on HoB₆. Below the ferroquadrupolar ordering temperature $T_Q = 6.1$ K, the cubic crystal structure of HoB₆ (space group $Pm\overline{3}m$) is found to be rhombohedrically distorted (space group $R\overline{3}m$) with the angle α increasing from the cubic 90° to 90.264° at 2.1 K.

KEYWORDS: spallation neutron source SINQ, powder neutron diffractometer HRPT, germanium wafer monochromator, HoB₆, Jahn Teller effect

§1. Introduction

From the view of an external user the new flexible high-resolution powder neutron diffractometer $\mathrm{HRPT}^{1,2)}$ at the continuous spallation neutron source $\mathrm{SINQ}^{3)}$ at the Paul Scherrer Institute (PSI) in Villigen,

Fig.1. Layout of HRPT diffractometer at SINQ.

Switzerland, is introduced in section 2. HRPT was designed by Peter Fischer. First neutron diffraction experiments were performed in 1999 and regular user operation has started in 2000. In section 3 the results of an early proposal experiment on HRPT are summarized (HoB₆, SINQ project II/99L-15). The excellent performance of HRPT is demonstrated by the successful measurement of the rather small distortion of the crystal structure of HoB₆ from cubic (space group $Pm\overline{3}m$) to trigonal (space group $R\overline{3}m$) below the ferroquadrupolar ordering temperature $T_{\rm Q} = 6.1$ K.

§2. The Diffractometer HRPT at SINQ

The layout of HRPT is illustrated in Fig. 1. Thermal neutrons originate from a H_2O scatterer close to the SINQ target and pass a liquid nitrogen cooled Si filter of 20 cm length. An intensity gain up to a factor four is achieved by means of a 28 cm high, vertically fo-

Fig.2. Measured resolution functions of HRPT for monochromator take-off angle 120° and sample diameter 10 mm (Si powder standard).

Fig.3. The simple cubic crystal structure of HoB₆.

cusing wafer-type Ge (h,k,k) monochromator with variable curvature.⁴⁾ The neutron wavelength can be easily changed in the range from 1.2 to 2.5 Å by turning of the monochromator around the vertical axis. HRPT uses high monochromator take-off angles $2\Theta_{\rm M}$ of 90° or $120^{\circ}.$ Resolution and intensity can be tuned to the experimental needs by appropriate choices of the primary collimation α_1 (6', 12', 40') and the variable slit system α_2 . Even for fairly large samples of 10 mm diameter, excellent resolution with lattice spacing d reaching $\delta d/d < 10^{-3}$ may be obtained, as shown in Fig. 2. HRPT is equipped with a large position sensitive ³He multidetector (radius: 1.5 m, active height: 15 cm) with 1600 channels of angular 2Θ separation 0.1° . It was produced by Cerca at Romans, France, and allows simultaneous measurements within a scattering angle range of 159.9° with angular step 0.1° (e.g., for real-time experiments). Measurements of the complete neutron diffraction pattern $(4.95^{\circ} \le 2\Theta \le 164.90^{\circ})$, angular step: 0.05° are performed at two angular positions with the first detector at $2\Theta = 4.95^{\circ}$ and at 5.00° .

For standard measurements, powder samples are en-

Fig. 4. Observed, calculated and difference HRPT neutron diffraction patterns ($\lambda = 1.197$ Å, high-intensity mode) of HoB₆ at 293 K. Vertical bars indicate positions of nuclear Bragg peaks for HoB₆ (upper row) and for the impurity phase HoB₁₂ (lower row).

closed under helium gas atmosphere into cylindrical vanadium tubes (diameters: 5 to 10 mm, usable height: up to 50 mm) and are mounted in an evacuated aluminium pot which is equipped with a cooling machine (8 K \leq T \leq 300 K). Bragg peaks from the sample environment, such as for cryostats and furnaces, are removed by an oscillating radial collimator consisting of individually stretched mylar foils coated with Gd-O. It was fabricated by J. Linderholm (JJ X-Ray) at Risø, Denmark.

§3. Experiments on HoB_6

The binary compound HoB_6 adopts the very simple CaB₆-type crystal structure (cubic space group $Pm\overline{3}m$, No. 221, with sites 1a(0, 0, 0) occupied by holmium and 6f $(x_B, 0.5, 0.5)$ by boron). This structure, illustrated in Fig. 3, can be viewed as two interpenetrating simple cubic lattices of B_6 -octahedra and Ho ions, which are set apart by the vector (0.5, 0.5, 0.5). HoB₆ has a Γ_5 triplet as crystal-field ground-state and undergoes two successive phase transitions at $T_{\rm Q} = 6.1$ K (ferroquadrupolar ordering) and $T_{\rm N}$ = 5.6 K (antiferromagnetic ordering).⁵⁻⁷⁾ Single crystals of incongruently melting HoB_6 were grown at Tohoku University by a crucible-free vertical floating zone method under 1 MPa pressurized highpurity (99.995%) argon.⁶⁾ For the neutron diffraction experiments on HRPT, 4.2 grams of $Ho^{11}B_6$ sample (prepared with 99.5 at% enriched ¹¹B isotope) was powderized and enclosed under helium gas atmosphere into a cylindrical vanadium container of 7.5 mm diameter and 30 mm height.

Fig.5. High-scattering angle part of observed, calculated and difference HRPT neutron diffraction patterns ($\lambda = 1.886$ Å, highresolution mode) of HoB₆ at 10 and 2.1 K. Vertical bars indicate positions of nuclear Bragg peaks for HoB₆ (upper row) and for the impurity phase HoB₁₂ (lower row).

Fig. 4 displays the neutron diffraction pattern of the HoB₆ sample at room temperature. HRPT was operated in the high-intensity mode (collimations: $\alpha_1 = 40'$, $\alpha_2 = 40'$) and the neutron wavelength $\lambda = 1.197$ Å was obtained from a Ge (7,3,3) monochromator at the take-off angle $2\Theta_{\rm M} = 120^{\circ}$. The profile refinement of this diffraction pattern confirms the CaB₆-type crystal structure of HoB₆ with the lattice parameter a = 4.097 Å and the positional parameter $x_{\rm B} = 0.199$. Moreover, it revealed the presence of a 11 volume% fraction of the impurity phase HoB₁₂ in the sample.

In HoB₆, the Jahn-Teller effect for the crystal-field ground-state Γ_5 gives rise to a huge softening of the elastic constant C₄₄ (80% just above $T_{\rm Q}$) and to ferroquadrupolar ordering with Γ_5 symmetry ($\langle O_{yz} \rangle = \langle O_{zx} \rangle$ = $\langle O_{xy} \rangle \neq 0$) below T_Q.⁵⁾ To study the change of the crystal structure of HoB₆ below $T_{\rm Q}$ (characterized by the spontaneous strain ($\langle \varepsilon_{yz} \rangle = \langle \varepsilon_{zx} \rangle = \langle \varepsilon_{xy} \rangle \neq 0$), HRPT was operated in a high-resolution mode ($\alpha_1 = 12$ ', $\alpha_2 =$ 24', $\lambda = 1.886$ Å, $2\Theta_{\rm M} = 120^{\circ}$).

The HRPT neutron diffraction data shown in Fig. 5 provide experimental evidence for a distortion of the cubic crystal structure below $T_{\rm Q} = 6.1$ K. Note that, in contrast to HoB₆, the Bragg peaks of the impurity phase HoB₁₂ do not exhibit significant positional shifts in the same temperature range. According to profile refinements, based on the cubic space group $Pm\overline{3}m$ at 10 K and on the trigonal space group $R\overline{3}m$ at 2.1 K, the trigonal angle $\alpha = \beta = \gamma$ changes from the cubic 90° at 10 K to 90.264° at 2.1 K. The order parameter θ of this structure of the stru

tural phase transition at $T_{\rm Q}$ can be determined from the angle α by using the relation $\alpha = 90^{\circ}+2\theta$. The angle $\alpha > 90^{\circ}$ corresponds to a shrinking of the cubic crystal structure along a [1,1,1] direction. A similar effect has been observed in DyB₆ below $T_{\rm Q} = 32$ K.⁸)

Below $T_{\rm N} = 5.7$ K, in the magnetically ordered state of HoB₆, antiferromagnetic Bragg peaks are observed in the low scattering angle part of the HRPT neutron diffraction patterns. The magnetic phase transition in HoB₆ has been studied in more detail on the neutron diffractometer DMC²) at SINQ and results will be reported elsewhere.

- P. Fischer, G. Frey, M. Koch, M. Könnecke, V. Pomjakushin, J. Schefer, R. Thut, N. Schlumpf, R. Bürge, U. Greuter, S. Bondt and E. Berruyer: Physica B 276-278 (2000) 146.
- P. Fischer, L. Keller, J. Schefer and J. Kohlbrecher: Neutron News 11 (2000) 19.
- 3) P. Allenspach: Neutron News 11 (2000) 15.
- J. Schefer, M. Böhm, L. Keller, M. Medarde, M. Horisberger, P. Fischer, V. Pomjakushin and A. Dönni: Physica B 283 (2000) 302.
- S. Nakamura, T. Goto, S. Kunii, K. Iwashita and A. Tamaki: J. Phys. Soc. Jpn. 63 (1994) 623.
- K. Takahashi and S. Kunii: J. Solid State Chem. 133 (1997) 198.
- T. Goto, Y. Nemoto, Y. Nakano, S. Nakamura, T. Kajitani and S. Kunii: Physica B 281-282 (2000) 586.
- K. Takahashi, H. Nojiri, K. Ohoyama, M. Ohashi, Y. Yamaguchi, S. Kunii and M. Motokawa: Physica B 241-243 (1998) 696.